• Title/Summary/Keyword: TFT-LCD display

Search Result 456, Processing Time 0.042 seconds

Array Testing of TFT-LCD Panel with Integrated Gate Driver Circuits

  • Lee, Jonghwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.3
    • /
    • pp.68-72
    • /
    • 2020
  • A new method for array testing of TFT-CD panel with the integrated gate driver circuits is presented. As larger size/high resolution TFT-LCD with the peripheral driver circuits has emerged, one of the important problems for manufacturing is array testing on the panel. This paper describes the technology of detecting defective arrays and optimizing the array testing process. For the effective characterization of pixel array, the pixel storage capability is simulated and measured with voltage imaging system. This technology permits full functional testing during the manufacturing process, enabling fabrication of large TFT-LCD panels with the integrated driver circuits.

An Internal Touch Screen Panel Using Standard a-Si:H TFT LCD process

  • You, Bong-Hyun;Lee, Byoung-Jun;Lee, Ki-Chan;Han, Sang-Youn;Koh, Jai-Hyun;Takahashi, Seiki;Berkeley, Brian H.;Kim, Nam-Deog;Kim, Sang-Soo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.250-253
    • /
    • 2008
  • A touch screen panel embedded 12.1-inch TFT LCD employing a standard a-Si:H TFT process has been successfully developed. Compared with conventional external touch screen panels, the new internal TSP exhibits a clearer image and improved touch feeling. Our new internal proposed TSP can be fabricated with low cost.

  • PDF

The Characterization of Poly-Si Thin Film Transistor Crystallized by a New Alignment SLS Process

  • Lee, Sang-Jin;Yang, Joon-Young;Hwang, Kwang-Sik;Yang, Myoung-Su;Kang, In-Byeong
    • Journal of Information Display
    • /
    • v.8 no.4
    • /
    • pp.15-18
    • /
    • 2007
  • In this paper, we investigated the SLS process to control grain boundary(GB) location in TFT channel region, and it has been found to be applicable for locating the GB at the same location in the channel region of each TFT. We fabricated TFT by applying a new alignment SLS process and compared the TFT characteristics with a normal SLS method and the grain boundary location controlled SLS method. Also, we have analysed degradation phenomena under hot carrier stress conditions for n-type LDD MOSFETs.

A Production Planning Framework for Slim MES in TFT-LCD Lines (TFT-LCD 제조 공정의 Slim MES를 위한 생산계획 프레임워크)

  • Suh, Jung-Dae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.5
    • /
    • pp.2038-2047
    • /
    • 2011
  • This paper presents a framework for production planning for a Slim MES(Manufacturing Execution System) of module operations in TFT-LCD(Thin Film Transistor-Liquid Crystal Display) production lines. There are differences in the line configurations and functions among the module operations in the TFT-LCD production systems. This paper presents the framework for the customized MES reflecting these differences. First, a production process is figured out through the analysis of the TFT-LCD module operations. Next, a mathematical modeling is presented reflecting the constraints of shop floors and an optimal schedule is presented through a case example. And a scheduling process using the dispatching rules reflecting the status of shop floors is presented and the performances are measured and compared. Finally, a design process for the Slim MES framework is presented.

Threshold Voltage Control of a-Si TFT by Delta Doping of Phosphorous

  • Soh, Hoe-Sup;Kim, Cheol-Se;Kim, Eung-Do
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1165-1167
    • /
    • 2007
  • Delta doping method can separate the threshold voltage control region from the charge transport region in a-Si TFT, whereby the threshold voltage of a TFT could be modified. Threshold voltage could be changed by delta doping, while field effect mobility was estimated to be 80% of that of standard TFT.

  • PDF

Reducing the Poly-Si TFT Non-Uniformity by Transistor Slicing

  • Lee, Min-Ho;Lee, In-Hwan
    • Journal of Information Display
    • /
    • v.2 no.2
    • /
    • pp.27-31
    • /
    • 2001
  • Transistor slicing refers to the use of multiple smaller transistors in implementing a large MOS transistor. What is special about transistor slicing is that it can reduce the effects of device non-uniformity introduced during the fabrication process. The paper presents the idea of transistor slicing and analyzes the benefits of using transistor slicing in the context of Poly-Si TFT-LCD driving.

  • PDF

New Generation Color Filter Technology in TFT-LCD

  • Koo, Horng Show
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.408-411
    • /
    • 2004
  • Color filter is a fundamental and necessary component to make a full-color TFT-LCD, its quality intensively influence the performance of TFT-LCD in the application of Notebook Computer, Monitor and Television. Color filter in chromaticity also make an effect for human visual system and video enjoyment. Recently, mother glass size is enlarged for demand of large-size panels and new generation color .filter technology for large-size liquid crystal cell panels is also developed. Here, latest generation color filter technology in TFT-LCD will be discussed.

  • PDF

Optimization for the Natural Frequency of the TFT-LCD Glass Plate with Multi-Support Point (다점지지된 TFT-LCD 유리기판의 고유진동수 최적화)

  • Lee, H.S.;Lee, Y.S.;Kim, H.S.;Lee, J.W.;Lee, S.H.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.246-249
    • /
    • 2005
  • The TFT-LCD is extensively used from a small watch to a large TV display, and the demand is increasing rapidly. The size of R-LCD glass plate becomes more bigger, and the thickness become more thinner with high demands. As a result natural frequency of the TFT-LCD glass plate becomes more lower. The TFT-LCD glass plate will be moved by robot arm and may receive effect of vibration that occur at transfer. Natural frequency of the TFT-LCD glass plate is increased or decrease according to location that robot arm fixs glass plate. Purpose of a this study is finding support location that optimize the first natural frequency of TFT-LCD glass plate. The size optimization method of ANSYS 8.0 is used as the optimization tool search on the optimal support location of TFT-LCD glass plate. The considered number of support point is from 4 to 9.

  • PDF

2.22-inch qVGA ${\alpha}$-Si TFT-LCD Using a 2.5 um Fine-Patterning Technology by Wet Etch Process

  • Lee, J.B.;Park, S.;Heo, S.K.;You, C.K.;Min, H.K.;Kim, C.W.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1649-1652
    • /
    • 2006
  • 2.22-inch qVGA $(240{\times}320)$ amorphous silicon thin film transistor liquid active matrix crystal display (${\alpha}$- Si TFT-AMLCD) panel has been successfully demonstrated employing a 2.5 um fine-patterning technology by a wet etch process. Higher resolution 2.22-inch qVGA LCD panel with an aperture ratio of 58% can be fabricated because the 2.5 um fine pattern formation technique is combined with high thermal photo-resist (PR) development. In addition, a novel concept of unique ${\alpha}$-Si TFT process architecture, which is advantageous in terms of reliability, was proposed in the fabrication of 2.22-inch qVGA LCD panel. Overall results show that the 2.5 um finepatterning is a considerably significant technology to obtain higher aperture ratio for higher resolution ${\alpha}$-Si TFT-LCD panel realization.

  • PDF

Characterization of instability in a-Si:H TFT LCD utilizing copper as electrodes

  • Kuan, Yung-Chia;Liang, Shuo-Wei;Chiu, Hsian-Kun;Sun, Kuo-Sheng
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.747-751
    • /
    • 2006
  • The hydrogenated amorphous silicon thin film transistor (a-Si:H TFT) with copper as source and drain electrode has been fabricated to obtain its transfer characteristics and stressed with positive and negative bias to investigate the instability variation comparing to conventional MoW-Al based TFT device. The results show that there is no copper diffusion into active layer of a-Si:H TFT, even during the thermal process. In addition, a 15-inch XGA a Si:H TFT LCD display utilizing Cu as gate electrodes has been developed.

  • PDF