Journal of Korea Society of Industrial Information Systems
/
v.20
no.2
/
pp.73-83
/
2015
This paper proposes a TFT-LCD defect blob detection algorithm using the sequential defect detection method. First, for every pixel, a defect possibility is determined by the intensity difference and the defect candidates are detected according to the sequential defect detection method. For detected candidate pixels, the defect probability that indicates a potential included in the defect according to the each step. By applying the morphological operation, blobs are comprised of the detected candidates and the defect blobs are detected using the defect possibility of blobs. The validity of the proposed method was demonstrated a simulated image and also then it was tested a real TFT-LCD image. By the experimental results, the proposed method is very effective in TFT-LCD detect detection.
Defect region segmentation of TFT-LCD images is performed by combining defect pixels detected by a defect detection method into defect region, or by using morphological operations to segment defect region. Therefore, the result of segmentation of the defect region is highly dependent on the defect detection result. In this paper, we propose a method which segments defect regions sequentially according to the possibility of being included in defect regions in TFT-LCD images. The proposed method repeats the process of detecting a seed using the median value and the median absolute deviation of the image, and segments the defect region using the seeded region growing method. We confirmed the superiority of the proposed method to segment defect regions using pseudo-images and real TFT-LCD images.
The reliable detection of the limited defect in TFT-LCD images is difficult due to the small intensity difference with the background. However, the proposed detection method reliably detects the limited defect by enhancing the TFT-LCD image based on the cumulative histogram and then detecting the defect through the mean and standard deviation of the enhanced image. Notably, an image enhancement using a cumulative histogram increases the intensity contrast between the background and the limited defect, which then allows defects to be detected by using the mean and standard deviation of the enhanced image. Furthermore, through the comparison with the histogram equalization, we confirm that the proposed algorithm suppresses the emphasis of the noise. Experimental comparative results using real TFT-LCD images and pseudo images show that the proposed method detects the limited defect more reliably than conventional methods.
In this paper, an automated line-defect detection method for TFT-LCD panel is presented. A DFB(Directional Filter Bank) and line-projection method are used to find line-defect which is one of the major defects occurred in TFT-LCD panel. The experimental results show that the proposed algorithm gave promising results for applying automated inspection technique for TFT-LCD panel.
Park, Woon-Ik;Lee, Kyu-Bong;Kim, Se-Yoon;Park, Kil-Houm
Journal of KIISE:Computing Practices and Letters
/
v.14
no.6
/
pp.604-608
/
2008
The TFT-LCD image allows non-uniform illumination variation and that is one of main difficulties of finding defect region. The SQI (self quotient image) has the HPF (high pass filter) shape and is used to reduce low frequency-lightness component. In this paper, we proposed the TFT-LCD defect-enhancement algorithm using characteristics of the SQI, that is the SQI has low-frequency flattening effect and maintains local variation. The proposed method has superior flattening effect and defect-enhancement effect compared with previous the TFT-LCD image preprocessing.
Journal of Korea Society of Industrial Information Systems
/
v.19
no.6
/
pp.43-51
/
2014
TFT-LCD image includes a defect of various properties. TFT-LCD image have a recognizable defects in the human inspector. On the other hand, it is difficult to detect defects that difference between the background and defect is very low. In this paper, we proposed sequentially detect algorithm from pixels included in the defect region to limited defects. And blob analysis methods using the blob size and gray difference are applied to the defect candidate image. Finally, we detect an accurate defect blob to distinguish the noise. The experimental results show that the proposed method finds the various defects reliably.
Proceedings of the Safety Management and Science Conference
/
2004.05a
/
pp.283-289
/
2004
The number of pixel defects including bright and black dots on a panel is one of the critical factors determining the quality of TFT-LCD. Since pixel defects on the TFT-LCD panels are sometimes unavoidable, manufacturers have to inspect the panels so that any panel with an unacceptable number of defects will not be delivered to the buyers. However, the buyers demand for the manufacturers to meet different pixel defects tolerances (acceptable number of pixel defects on a TFT-LCD panel) around central(tight) and peripheral(loose) inspection zones. The disagreement in quality standard among different buyers also cause confusions in screening non-confirmative products and unstable yield of production. Few research has focused on the effects of defect locations on a TFT-LCD panel on their detection probabilities and the rational division of defect inspection zones. In this research, experiments were conducted to find the detection probabilities of black dot defects with respect to their varying locations on a TFT-LCD. It is proposed a rational division of inspection zone on a TFT-LCD panel on the basis of detection probabilities of the defects. With these division of inspection zones and the mean defect detection probability within each zone, it is expected to establish a more reasonable pixel defects tolerances.
TFT-LCD automatic defect inspection system for detecting defects in place of the visual tester does pre-processing, candidate defect pixel detection, and recognition and classification through a blob analysis. An over-detection result of defects acts as an undue burden of blob analysis for recognition and classification. In this paper, we propose defect detection method based on the histogram distribution modeling of TFT-LCD image to minimize over-detection of candidate defective pixels. Primary defect candidate pixels are detected estimating the skewness of the luminance distribution histogram of the background pixels. Based on the detected defect pixels, the defective pixels other than noise pixels are detected using the distribution histogram model of the local area. Experimental results confirm that the proposed method shows an excellent defect detection result on the image containing the various types of defects and the reduction of the degree of over-detection as well.
TFT-LCD(Thin Film transistor liquid crystal display) has become actively used front panel display technology with increasing market. Intrinsically there is region of non uniformity with low contrast that to human eye is perceived as defect. As the gray level difference between the defect and the background is hardly distinguishable, conventional thresholding and edge detection techniques cannot be applied to detect the defect. Between the patterned and un-patterned LCD defects, this paper deals with un-patterned LCD defects by using independent component analysis, adaptive thresholding and skewness. Our method showed strong results even on noised LCD images and worked successfully on the manufacturing line.
Journal of the Institute of Electronics and Information Engineers
/
v.51
no.4
/
pp.123-130
/
2014
In TFT-LCD panel images, defects are typically detected by using a large difference in the brightness compared to the background. In this paper, we propose a sequential defect detection algorithm according to defect possibility caused by difference of brightness. By using this method, pixels with high defect probabilities are preferentially detected and defects with a large brightness difference are accurately detected. Also, limited defects with a small brightness difference is detected more reliably, eventually minimizing the degree of over-detection. We have experimentally confirmed that our proposed method showed an excellent detection result for detecting limited defects as well as defects with a large brightness difference.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.