• Title/Summary/Keyword: TFEL

Search Result 30, Processing Time 0.027 seconds

Luminescent Characteristics of SrS:Cu,X Thin-Film Electroluminescent(TFEL) Deviecs depending on Coactivatiors (부활성제에 따른 SrS:Cu,X 박막 전계발광소자의 발광 특성)

  • Lee, Soon-Seok;Ryu, Chang-Keun;Lim, Sung-Kyoo
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.1
    • /
    • pp.29-35
    • /
    • 2000
  • Luminescent characteristics of SrS:Cu,X TFeL devices fabricated by electron-beam deposition system were studied. The SrS powders were used as the host materials and Cu, $CuF_2,\;Cu_2S$ or CuCl powders were added as the luminescent center. The emission spectra of the SrS:Cu,X TFEL devices strongly depended on coactivators. The luminance($L_{40}$) and efficiency(${\eta}_{20}$) of SrS:$Cu_2S$ TFEL device were 1443 cd/$m^2$ and 2.44 lm/w, respectively. Green color was observed from this TFEL device. The luminous efficiency of SrS:$Cu_2S$ TFEL device was higher than that of ZnS:Tb TFEL device, and it also could be good green phosphors for TFEL devices. The luminance($L_{40}$) and efficiency(${\eta}_{20}$) of SrS:CuCl TFEL device were 262 cd/$m^2$ and 0.26 lm/w, respectively. Blue color was emitted from this TFEL device.

  • PDF

Fabrication and characteristics of TFEL device using phosphor layer ZnS:Mn/$ZnS:TbF_{3}$ slatted structure (ZnS:Mn/$ZnS:TbF_{3}$ 적층구조의 형광층을 이용한 TFEL소자의 제작 및 그 특성)

  • Park, Kyung-Vin;Kim, H.W.;Bae, S.C.;Kim, Y.J.;Cho, K.H.;Kim, K.W.
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.1
    • /
    • pp.63-71
    • /
    • 1997
  • The thin-film eletroluminescent (TFEL) device having the stacked structure of ZnS:Mn/$ZnS:TbF_{3}$ has been fabricated. Insulate layers used (Pb,La)$TiO_{3}$ and $SiO_{2}$ thin films. The emission color was white. The TFEL device employing ZnS:Mn/$ZnS:TbF_{3}(8000{\AA})$ stacked phosphor layers showed the threshold voltage of $78V_{rms}$. And the brightness of the TFEL device was $400{\mu}W/cm^{2}$ at the applied voltage of $100V_{rms}$. The emission spectrum of TFEL device had a wavelength from 450nm to 620nm. The manufactured devices can be a practical use as a TFEL devices of red, green and blue by using the color filters.

  • PDF

Fabrication of Bright Blue SrS:CuCl Thin-Film Electroluminescent(TFEL) Devices (고휘도 청색 발광 SrS:CuCl 박막 전계발광소자의 제작)

  • Lee, Soon-Seok;Lim, Sung-Kyoo
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.1
    • /
    • pp.36-43
    • /
    • 2000
  • The sulfur pressure and TRA(rapid thermal annealing) conditions of the fabricated SrS:CuCl TFEL devices were optimized to improve blue color luminance. The thickness of the phosphor layer of SrS:CuCl TFEL devices fabricated by electron beam deposition system was 6000 ~ 8000 ${\AA}$. The fabricated TFEL devices were annealed at 800 $^{\circ}C$ for 3 min. It was shown that the crystallinity of SrS:CuCl phosphor was improved by an increase in RTA temperature and RTA time. Blue color was emitted from the TFEL device with emission peak wavelength of 468 nm and 500 nm. The CIE color coordinates were x = 0.21, y = 0.33. The luminance($L_{40}$) of TFEL device strongly depended on the sulfur pressure of deposition chamber and increased from 262 cd/$m^2$ to 728 cd/m2 as the sulfur pressure increased from $8{\times}10^{-6}$ torr to $2{\times}10^{-5}$ torr.

  • PDF

luminescent Characteristics of $Ca_{1-x}$Sr$_{x}$S:CuCl Thin-film Electroluminescent(TFEL) Device (Ca$_{1-x}$Sr$_{x}$S:CuCl 박막 전계발광소자의 발광 특성)

  • 이순석;김미혜
    • The Journal of the Korea Contents Association
    • /
    • v.2 no.3
    • /
    • pp.146-151
    • /
    • 2002
  • The $Ca_{1-x}$Sr$_{x}$S:CuCl TFEL devices were fabricated by electron-beam deposition system and luminescent characteristics of the TFEL devices were studied. The SrS and CaS powders were mixed to form $Ca_{1-x}$Sr$_{x}$S host materials and 0.2 at% of CuCl was added as the activator. The luminance(lao) and peak emission wavelength of CaS:CuCl TFEL devices were 9.5 cd/m$^2$ and 492 nm, respectively. The luminance(L$_{30}$) and peak emission wavelength of SrS:CuCl TFEL devices were 633 cd/m$^2$ and 500 nm, respectively. It seems that the addition of CaS into the SrS host material generates blue shift of the EL emission characteristics but reduces the luminance and the luminous efficiency of the $Ca_{1-x}$Sr$_{x}$S:CuCl TFEL devices drastically.

  • PDF

Recent progress in oxide phosphor thin-film electroluminescent devices

  • Minami, Tadatsugu;Miyata, Toshihiro
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.27-32
    • /
    • 2006
  • The present status and prospects for further development of thin-film electroluminescent (TFEL) devices using oxide phosphors are described. High-luminance oxide TFEL devices have been recently developed using a new combinatorial deposition technique featuring rf magnetron sputtering with a subdivided powder target. In addition, new flexible oxide TFEL devices have been fabricated on an oxide ceramic sheet and operated stably in air above $200^{\circ}C$.

  • PDF

Design and Implementation of Driver Circuit for AC TFEL Flat Panel Display (AC TFEL 평판표시장치의 구동회로 설계 및 구현)

  • 오건창;김명식;권용무;오명환;김덕진
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.10
    • /
    • pp.27-34
    • /
    • 1993
  • In this paper, a driver system is designed and implemented to achieve 4-level gray scale CH TFEL(Thin Film ElectroLuminescent) flat panel display. To implement the driver system, commercial EL driver IC chips are used to apply high voltage pulses to the EL panel and a high voltage switching circuit is designed for the EL driver IC. A new method of reducing storage delay time of transistor is proposed to obtain a reliable switching circuit. The controller for EL driver and switching circuit is also designed. The designed driving scheme applicable to EL display with 4-level gray scale is based on the linear characteristics of brightness vs. frequency of AC TFEL. By experiment, it has been shown that the brightness of AC TEFL display with the implemented driving system is controlled by the level of gray scale.

  • PDF

Present and trend of oxide phosphor thin film development for electroluminescent device applications

  • Miyata, Toshihiro;Minami, Tadatsugu
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1145-1148
    • /
    • 2008
  • The present status and trend of oxide phosphor thin-film development for thin-film electroluminescent (TFEL) device application are presented in this paper. Recently, several newly developed types of bendable or bendable see-through oxide TFEL lamps have been fabricated using the TFEL technology with a newly developed bendable ceramic sheet, glass sheet or sapphire sheet substrate, which has become available on the market. Stable operation at high temperatures was obtained in double-insulating-layer-type TFEL lamps fabricated with a $Zn_2Si_{0.6}Ge_{0.}4O_4$:Mn thin-film emitting layer forming on translucent or transparent bendable sheet substrates.

  • PDF

Luminescent Characteristics of SrS:CuCl Thin-Film Electroluminescent(TFEL) Devices on CuCl Concentrations (CuCl 농도에 따른 SrS:CuCl 박막 전계발광소자의 발광특성)

  • Lee, Sun-Seok;Im, Seong-Gyu
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.8
    • /
    • pp.17-23
    • /
    • 2002
  • The SrS:CuCl TFEL devices were fabricated by electron-beam deposition and the luminescent characteristics of the fabricated SrS:CuCl TFEL devices were studied. The SrS powder was used as the host materials and 0.05 ~ 0.6 at% of CuCl powder was added as the luminescent center. The deposition conditions of substrate temperature, electron beam current, and deposition rate were 500 $^{\circ}C$ , 20 ~ 40 mA, and 5 ~ 10 /sec, respectively The total thickness of the phosphor layer deposited was 6000 . The blue emission at low CuCl concentrations was observed from the luminescent centers of monomer, dimer, trimer, and tetramer, The bright greenish blue emission at high CuCl concentrations was observed from the dimer and trimer luminescent centers. The maxium luminance was observed from the SrS:CuCl TFEL devices doped with 0.2 at% of CuCl concentration and the threshold voltage, luminance(L$_{40}$ ), efficiency(η$_{20}$) and CIE coordinate obtained were 55 V, 728 cd/$m^2$, 0.49 lm/w, and (0.21, 0.33), respectively..

ZnS:Mn 박막 형광체를 적용한 다층 EL 소자 특성 연구

  • U, Seo-Hwi;Yu, Dong-Hwan;An, Seong-Il;Lee, Seong-Ui
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.206-206
    • /
    • 2009
  • RF Magnetron Sputtering 방법을 통해 ZnS:Mn 박막 형광체를 증착한 다층 TFEL (Thin-Film Electroluminescent) Backlight 소자를 제작하였다. Alumina 기판 위에 Au 전극과 PMN 후막 유전체를 Screen printing 기법으로 층을 형성하였다. 그 위에 MgO 박막 유전체를 E-Beam 장비를 이용하여 증착 후, ZnS:Mn 박막 형광체를 50 W 의 저전력으로 약 8000 ${\AA}$ 두께로 증착하였다. 형광체는 Sputter 증착 시 Sulfur 부족 현상을 보상해주기 위해 ZnS:Mn (0.5%) Target 에 2 at % 의 Sulfur를 첨가하였으며, 상부 전극으로 사용할 ITO 는 DC Magnetron Sputter 를 이용하여 증착하였다. 어닐링 공정은 Air 분위기에서 급속 열처리 장치 (RTA, Rapid Thermal Annealing) 을 이용하여 600 $^{\circ}C$에서 20 분 진행하였다. 이러한 과정들을 통해 저전압 고휘도의 TFEL Backlight 소자를 제조할 수 있었다.

  • PDF

Threshold Voltage Variation of ZnS:Mn/ZnS:Tb Thin- film Electroluminescent(TFEL) Devices (ZnS:Mn/ZnS:Tb 박막 전계발광소자의 문턱전압 변화)

  • 이순석;윤선진;임성규
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.6
    • /
    • pp.21-27
    • /
    • 1998
  • Electrical and optical characteristics of ZnS:Mn/ZnS:Tb multilayer TFEL devices were investigated for multi-color electroluminescent display applications. Emission spectra of M $n^{2+}$ and T $b^{3+}$ ions were observed from ZnS:Mn/ZnS:Tb multi-layer TFEL devices, and were very broad from 540 nm to 640 nm. Saturation luminance measured at 155 V was 1025 Cd/$m^2$. C-V, $Q_{t}$ - $V_{p}$ curves showed that the phosphor capacitance ( $C_{p}$ ) and the insulator capacitance ( $C_{i}$ ) were 13.5nF/$\textrm{cm}^2$ and 60 nF/$\textrm{cm}^2$, respectively. Threshold voltage( $V_{thl}$) was shown to decrease from 126 V to 93 V due to the increase of the applied voltage from 155 V to 185 V, which was attributed to the increase of the polarization charge. The equation for the calculation of the threshold voltage as a function of the applied voltage was proposed for the first time. The calculated threshold voltage agreed well with the data obtained from the measurement.t.t.t.

  • PDF