• Title/Summary/Keyword: TEX>

Search Result 313,509, Processing Time 0.152 seconds

A syudy on electrochemical charcteristic of $Li_{1-x}Mn_{2}O_{4}$(0$\leq$x$\leq$0.075) ($Li_{1-x}Mn_{2}O_{4}$(0$\leq$x$\leq$0.075)의 전기화학적 특성연구)

  • 박종광;고건문;김민기;이남재;임석진;한병성
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.444-447
    • /
    • 2000
  • The spinel L $i_{1-x}$ M $n_2$ $O_4$has been synthesized by the solid-state reaction. L $i_{l-x}$M $n_2$ $O_4$which includes a mixture of LiOH . $H_2O$ and Mn $O_2$prepared by preliminary heating at 35$0^{\circ}C$ for 12hr. L $i_{l-x}$M $n_2$ $O_4$fired at temperature range from 75$0^{\circ}C$ for 48hr. The structure and the electrochemical characteristics of spinel to L $i_{1-x}$ M $n_2$ $O_4$which is fabricated by changing sintering condition from starting materials are investigated. The cyclic voltammetric measurement was performed using 3 electrode cells. Electrode specific capacity and cycle life behavior were tested in a 3.0~4.2V range at a constant current density of 0.45mA/c $m^2$. To improve the cycle performance of spinel L $i_{l-x}$M $n_2$ $O_4$as the cathode of 4V class lithium secondary batteries, spinel phases L $i_{1-x}$ M $n_2$ $O_4$were Prepared at various lithium. The results showed that discharge capacity of L $i_{l-x}$M $n_2$ $O_4$varied at lithium quantity decrease with increasing lithium add quantity. The discharge capacities of L $i_{0.925}$M $n_2$ $O_4$and LiM $n_2$ $O_4$revealed 108 and 117mAh/g, respectively.spectively.y.

  • PDF

Hydrogeochemistry of Some Abandoned Metal Mine Creeks in the Hwanggangri Mining District, Korea : A Preliminary Study (황강리 광화대에 분포하는 일부 폐금속 광산수계의 수리지구화학적 특성 : 예비연구)

  • 이현구;이찬희;이종창
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.6 no.4
    • /
    • pp.194-205
    • /
    • 1999
  • Hydrogeochemical variation and environmental isotope at the some abandoned metal mine (Sanggok, Keumsil, Jangpung and Samdeok) creeks of the Hwanggangri mining district were carried out based upon the physicochemical properties for surface water collected of February in 1998. Hydrogeochemical composition of the all water samples are characterized by the relatively significant enrichment of Ca$^{2}$, alkaline ions, N $O_3$$^{-}$ and Cl$^{-}$ in normal surface water, whereas the surface waters near the mining area are relatively enriched in Ca$^{2+$, Mg$^{2+}$, heavy metals. HC $O_3$$^{-}$ and S $O_4$$^{2-}$. Surface waters of the mining creek have low pH, high EC and extremely high concentrations of TDS compared with surface water of the non-mining creeks. The range of $\delta$D and $\delta$$^{18}$O values (SMOW) in the waters are shown in -65.0 to-71.2$\textperthousand$ and -9.1 to-10.2$\textperthousand$. The d($\delta$D-$\delta$$^{18}$O) value with those of water samples ranged from 7.3 to 10.9. These $\delta$D and $\delta$$^{18/}$ of the acid mine water are more heavy values than those of surface water. The values have revealed the positive correlation between isotopic compositions and major elements, because those $\delta$D and $\delta$$^{18}$O values increase with increasing TDS. HC $O_3$$^{-}$ , S $O_4$$^{2-}$ and Ca$^{2+}$ concentration. Using WATEQ4F, saturation index of albite calcite, dolomite and mostly clay minerals in water of the mining area show undersaturated and progressively evolved toward the equilibrium condition due to fresh water mixing, however, surface waters of the non-mining area are nearly saturated and/or supersaturated. Geochemical modeling showed that mostly toxic heavy metals within water in the mining creek may exist largely in the from of metal-sulfate (MS $O_4$$^{2-}$), free metal (M$^{2+}$/), C $O_3$$^{-}$ and/or OH$^{-}$ complex ions. Based on the geology, water chemistry and environmental istopic data the water compositions from the Sanggok and Keumsil mine creek (consist mainly of Cambro-Ordovician carbonate rocks of the Cho-seon Supergroup) show higher PH, Ca$^{2+}$, Mg$^{2+}$ , HC $O_3$$^{-}$ and more heavy $\delta$D and $\delta$$^{18}$O values than those from the Jangpung and Samdeok mine creek (consist of age -unknown metasedimentary rocks of the Ogcheon Supergroup and/or Jurassic grani-toids), but each of these waters represents a similar hydrogeochemical evolution path by the mine water mixing.

  • PDF

The Spin-Rotation Interaction of the Proton and the Fluorine Nucleus in the Tetrahedral Spherical Top Molecules

  • Lee, Sang-Soo;Ozier, Irving;Ramsey, N.F.
    • Nuclear Engineering and Technology
    • /
    • v.5 no.1
    • /
    • pp.38-43
    • /
    • 1973
  • The spin-rotation constants of the proton and tile fluorine nucleus in C $H_4$, Si $H_4$, Ge $H_4$, C $F_4$, Si $F_4$ and Ge $F_4$ were determined experimentally by the molecular beam magnetic resonance method. From the Hamiltonian and the high field approximation, the quantized energy level is given by the following equation. W $m_{I}$ $m_{J}$=- $g_{I}$ $m_{I}$H- $g_{J}$ $m_{J}$H- $C_{av}$ $m_{I}$ $m_{J}$, where $c_{av}$ is one third of the trace of the C tensor. In the nuclear resonance experiment, the proton and the fluorine nuclear resonance curves consist of many unresolved lines given by v=- $g_{J}$H- $C_{av}$ $m_{I}$, and a Gaussian approximation is made to correlate $c_{av}$ to the experimentally obtained half-width of the resonance curve. In the rotational resonance experiment, the five resonance peaks as predicted by v=- $g_{I}$H- $c_{av}$ $m_{I}$, $m_{I}$=0, $\pm$1 and $\pm$2, were all observed. The magnitude of car was determined by measuring the frequency distance between two adjacent peaks. The sign of $c_{av}$ was determined by the side peak suppression technique. The technique is described, and the sign and magnitude of the spin-rotation constant cav are summarized as following: for C $H_4$ -10.3$\pm$0.4tHz(from the rotational resonance), for SiH +3.71$\pm$0.08kHz(from the nuclear resonance), for Ge $H_4$+3.79$\pm$0.13kHz(from the nuclear resonance), for C $F_4$, -6.81$\pm$0.08kHz(from the rotational resonance), for Si $F_4$, -2.46$\pm$0.06kHz(from the rotational resonance), and finally for Ge $F_4$-1.84$\pm$0.04kHz(from the rotational resonance).onal resonance).esonance).

  • PDF

Une étude pour la critique de théâtre avec la sémiotique ouverte -avec par Jean Genet- (열린 기호학을 활용한 연극비평 연구 -장 주네의 <하녀들> 공연을 중심으로-)

  • LIM, Seon-Ok
    • Journal of Korean Theatre Studies Association
    • /
    • no.40
    • /
    • pp.239-275
    • /
    • 2010
  • Cette ${\acute{e}}tude$ a pour but de proposer une $m{\acute{e}}thodologie$ de critique avec la $s{\acute{e}}miotique$ ouverte. La critique de $th{\acute{e}}{\hat{a}}tre$ commence ${\grave{a}}$ lire le $th{\acute{e}}{\hat{a}}tre$, l'analyse et juge son valeur. Il arrive souvent qu'on juge avec intutition. On dit que c'est une critique d'impressionnisme. Cette critique est subjective, mais pas objective. La $s{\acute{e}}miotique$ de Saussure offre la $m{\acute{e}}thodologie$ scientifique ${\grave{a}}$ la critique. A $c{\hat{o}}t{\acute{e}}$ de la critique d'impressionnisme qui est subjective, la $s{\acute{e}}miotique$ peut expliciter la raison objective. On ${\acute{e}}tait$ admiratif devant sa scientisme, pourtant $apr{\grave{e}}s$ quoi on critique sa non-$subjectivit{\acute{e}}$ et sa non-$historicit{\acute{e}}$. Dans l'opposition de $l^{\prime}objectivit{\acute{e}}$ et de la $subjectivit{\acute{e}}$, on tente de rechercher un model $int{\acute{e}}gr{\acute{e}}$ dialectiquement entre l'impressionisme(subjective) et la scientisme(objective). Pour cela, on doit aux Ecrits de linguistique $g{\acute{e}}n{\acute{e}}rale$ ($publi{\acute{e}}$ en 2002 chez Gallimard). Ces Ecrits nous aident ${\grave{a}}$ amener la $s{\acute{e}}miotique$ $ferm{\acute{e}}e$ sur la $s{\acute{e}}miotique$ ouverte et ${\grave{a}}$ $red{\acute{e}}couvrir$ la $pens{\acute{e}}e$ de Saussure. Ils nous font ouvrir un nouveau champ de recherche pour la $s{\acute{e}}miotique$ ouverte. L'essentiel de la $th{\acute{e}}orie$ saussurienne du signe $d{\acute{e}}pend$ de l'arbitraire et du circulaire du signe. On $red{\acute{e}}couvre$ la notion ${\acute{e}}largie$ du signe, dans Ecrits de linguistique $g{\acute{e}}n{\acute{e}}rale$, contre le courant majeur de linguistique et de structuralisme. Cette notion s'y focalise, ${\grave{a}}$ la valeur, ${\grave{a}}$ la $relativit{\acute{e}}$, ${\grave{a}}$ la $diff{\acute{e}}rence$ et au $syst{\grave{e}}me$. Avec elle, on tente d'adopter la $s{\acute{e}}miotique$ ouverte pour rechercher une $m{\acute{e}}thodologie$ de critique qui se veut objective et ${\grave{a}}$ la fois subjective. Il s'agit d'une difficile combinaison de l'impressionisme et de la scienticisme. Pour cela, la $m{\acute{e}}thodologie$ se $d{\acute{e}}veloppera$ en trois ${\acute{e}}tapes$. $1{\grave{e}}re$ ${\acute{e}}tape$: c'est lire le $th{\acute{e}}{\hat{a}}tre$ comme un signe total pour 1er jugement d'impressionnisme. $2{\grave{e}}me$ ${\acute{e}}tape$: c'est retrouver sa structure invisible dans la $relativit{\acute{e}}$ des signes. $3{\grave{e}}me$ ${\acute{e}}tape$: c'est juger, dans leur $relativit{\acute{e}}$, comment les $d{\acute{e}}tails$ de signes se fonctionnent. C'est lire les $d{\acute{e}}tails$ de signes et puis $r{\acute{e}}affirmer$ le jugement en $1{\grave{e}}re$ ${\acute{e}}tape$. Selon les $derni{\grave{e}}res$ deux ${\acute{e}}tapes$, on pourra comparer le premier jugement (impressif) et le dernier jugement (objectif), et enfin s'assumer comme critique. Selon la $m{\acute{e}}thodologie$ $propos{\acute{e}}e$, on pratique la critique sur ${\acute{e}}crit$ par Jean Genet, et mise en $sc{\grave{e}}ne$ par Lee Youn-Taek et par Park Jung-Hee. Pour la critique intertextuelle, on la fera en comparant les deux spectacles avec la $pi{\grave{e}}ce$ de Jean Genet. $D^{\prime}apr{\grave{e}}s$ la comparaison, Lee Youn-Taek met en $sc{\grave{e}}ne$ avec $fid{\acute{e}}lit{\acute{e}}$ la structre et les signes de $d{\acute{e}}tail$ de l'auteur, Park Jung-Hee change sa structre et ses signes pour mettre en $sc{\grave{e}}ne$ la $pi{\grave{e}}ce$ de Genet. Ils se $diff{\grave{e}}rent$ l'un et l'autre: Lee incite le discours de la classe sociale dans le spectacle, et Park y incite le discours du $d{\acute{e}}sir$. La $diff{\acute{e}}rence$ des signes dans la $relativit{\acute{e}}$ apporte la $diff{\acute{e}}rence$ de la signification de discours $th{\acute{e}}{\hat{a}}tral$, et enfin se font changer les significations de deux spectacles.

Leading Edge Statistics of a Turbulent Premixed Flame (난류 예혼합 화염 선단부의 통계적 특성에 관한 수치적 연구)

  • Kwon, Jaesung;Huh, Kang Y.
    • Journal of the Korean Society of Combustion
    • /
    • v.18 no.1
    • /
    • pp.13-20
    • /
    • 2013
  • Leading edge statistics are obtained by direct numerical simulation(DNS) of freely propagating incompressible and stagnating compressible turbulent premixed flames. Conditional averages of velocities in terms of reaction progress variable, c, and local flame surface density, ${\sum}^{\prime}_f$, are defined and compared through the flame brush. It holds asymptotically that $<u>_f=<S_d>_f$ and $<u>_u-<u>_b=D_t/L_w$ with the characteristic length scale of $\bar{c}$ variation, $L_w$. It also holds that $<u>_b=<u>_f$ for a freely propagating flame under no mean strain rate. The turbulent burning velocity, $S_T$, is determined by the conditional statistics at the leading edge under large activation energy.

RELATIONS OF IDEALS OF CERTAIN REAL ABELIAN FIELDS

  • Kim, Jae Moon
    • Korean Journal of Mathematics
    • /
    • v.6 no.2
    • /
    • pp.221-229
    • /
    • 1998
  • Let $k$ be a real abelian field and $k_{\infty}$ be its $\mathbb{Z}_p$-extension for an odd prime $p$. Let $A_n$ be the Sylow $p$-subgroup of the ideal class group of $k_n$, the $nth$ layer of the $\mathbb{Z}_p$-extension. By using the main conjecture of Iwasawa theory, we have the following: If $p$ does not divide $\prod_{{{\chi}{\in}\hat{\Delta}_k},{\chi}{\neq}1}B_{1,{\chi}{\omega}^{-1}$, then $A_n$ = {0} for all $n{\geq}0$, where ${\Delta}_k=Gal(k/\mathbb{Q})$ and ${\omega}$ is the Teichm$\ddot{u}$ller character for $p$. The converse of this statement does not hold in general. However, we have the following when $k$ is of prime conductor $q$: Let $q$ be an odd prime different from $p$. and let $k$ be a real subfield of $\mathbb{Q}({\zeta}_q)$. If $p{\mid}{\prod}_{{\chi}{\in}\hat{\Delta}_{k,p},{\chi}{\neq}1}B_{1,{\chi}{\omega}}-1$, then $A_n{\neq}\{0\}$ for all $n{\geq}1$, where ${\Delta}_{k,p}$ is the $Gal(k_{(p)}/\mathbb{Q})$ and $k_{(p)}$ is the decomposition field of $k$ for $p$.

  • PDF

*-NOETHERIAN DOMAINS AND THE RING D[X]N*, II

  • Chang, Gyu-Whan
    • Journal of the Korean Mathematical Society
    • /
    • v.48 no.1
    • /
    • pp.49-61
    • /
    • 2011
  • Let D be an integral domain with quotient field K, X be a nonempty set of indeterminates over D, * be a star operation on D, $N_*$={f $\in$ D[X]|c(f)$^*$= D}, $*_w$ be the star operation on D defined by $I^{*_w}$ = ID[X]${_N}_*$ $\cap$ K, and [*] be the star operation on D[X] canonically associated to * as in Theorem 2.1. Let $A^g$ (resp., $A^{[*]g}$, $A^{[*]g}$) be the global (resp.,*-global, [*]-global) transform of a ring A. We show that D is a $*_w$-Noetherian domain if and only if D[X] is a [*]-Noetherian domain. We prove that $D^{*g}$[X]${_N}_*$ = (D[X]${_N}_*$)$^g$ = (D[X])$^{[*]g}$; hence if D is a $*_w$-Noetherian domain, then each ring between D[X]${_N}_*$ and $D^{*g}$[X]${_N}_*$ is a Noetherian domain. Let $\tilde{D}$ = $\cap${$D_P$|P $\in$ $*_w$-Max(D) and htP $\geq$2}. We show that $D\;\subseteq\;\tilde{D}\;\subseteq\;D^{*g}$ and study some properties of $\tilde{D}$ and $D^{*g}$.

PRIME RADICALS IN ORE EXTENSIONS

  • Han, Jun-Cheol
    • East Asian mathematical journal
    • /
    • v.18 no.2
    • /
    • pp.271-282
    • /
    • 2002
  • Let R be a ring with an endomorphism $\sigma$ and a derivation $\delta$. An ideal I of R is ($\sigma,\;\delta$)-ideal of R if $\sigma(I){\subseteq}I$ and $\delta(I){\subseteq}I$. An ideal P of R is a ($\sigma,\;\delta$)-prime ideal of R if P(${\neq}R$) is a ($\sigma,\;\delta$)-ideal and for ($\sigma,\;\delta$)-ideals I and J of R, $IJ{\subseteq}P$ implies that $I{\subseteq}P$ or $J{\subseteq}P$. An ideal Q of R is ($\sigma,\;\delta$)-semiprime ideal of R if Q is a ($\sigma,\;\delta$)-ideal and for ($\sigma,\;\delta$)-ideal I of R, $I^2{\subseteq}Q$ implies that $I{\subseteq}Q$. The ($\sigma,\;\delta$)-prime radical (resp. prime radical) is defined by the intersection of all ($\sigma,\;\delta$)-prime ideals (resp. prime ideals) of R and is denoted by $P_{(\sigma,\delta)}(R)$(resp. P(R)). In this paper, the following results are obtained: (1) $P_{(\sigma,\delta)}(R)$ is the smallest ($\sigma,\;\delta$)-semiprime ideal of R; (2) For every extended endomorphism $\bar{\sigma}$ of $\sigma$, the $\bar{\sigma}$-prime radical of an Ore extension $P(R[x;\sigma,\delta])$ is equal to $P_{\sigma,\delta}(R)[x;\sigma,\delta]$.

  • PDF

${H^1}({\Omega})$-NORM ERROR ANALYSIS UNDER NUMERICAL QUADRATURE RULES BY THE P-VERSION OF THE FINITE ELEMENT METHOD

  • Kim, Ik-Sung;Kim, Chang-Geun;Song, Man-Suk
    • Communications of the Korean Mathematical Society
    • /
    • v.9 no.2
    • /
    • pp.467-489
    • /
    • 1994
  • Let $\Omega$ be a closed and bounded polygonal domain in R$^2$, or a closed line segment in R$^1$ with boundary $\Gamma$, such that there exists an invertible mapping T : $\Omega$ \longrightarrow $\Omega$ with the following correspondence: x$\in$$\Omega$ ↔ x = T(x) $\in$$\Omega$, (1.1) and (1.2) t $\in$ U$\sub$p/($\Omega$) ↔ t = to T$\^$-1/ $\in$ U$\sub$p/($\Omega$), where $\Omega$ denotes the corresponding reference elements I = [-1,1] and I ${\times}$ I in R$^1$ and R$^2$ respectively, (1.3) U$\sub$p/($\Omega$) = {t : t is a polynomial of degree $\leq$ p in each variable on $\Omega$}, and (1.4) U$\sub$p/($\Omega$) = {t : t = to T $\in$ U$\sub$p/($\Omega$)}.(omitted)

  • PDF

A SYMBOLIC POWER OF THE IDEAL OF A STANDARD 𝕜-CONFIGURATION IN 𝕡2

  • Shin, Yong-Su
    • The Pure and Applied Mathematics
    • /
    • v.25 no.1
    • /
    • pp.31-38
    • /
    • 2018
  • In [4], the authors show that if ${\mathbb{X}}$ is a ${\mathbb{k}}-configuration$ in ${\mathbb{P}}^2$ of type ($d_1$, ${\ldots}$, $d_s$) with $d_s$ > $s{\geq}2$, then ${\Delta}H_{m{\mathbb{X}}}(md_s-1)$ is the number of lines containing exactly $d_s-points$ of ${\mathbb{X}}$ for $m{\geq}2$. They also show that if ${\mathbb{X}}$ is a ${\mathbb{k}}-configuration$ in ${\mathbb{P}}^2$ of type (1, 2, ${\ldots}$, s) with $s{\geq}2$, then ${\Delta}H_{m{\mathbb{X}}}(m{\mathbb{X}}-1)$ is the number of lines containing exactly s-points in ${\mathbb{X}}$ for $m{\geq}s+1$. In this paper, we explore a standard ${\mathbb{k}}-configuration$ in ${\mathbb{P}}^2$ and find that if ${\mathbb{X}}$ is a standard ${\mathbb{k}}-configuration$ in ${\mathbb{P}}^2$ of type (1, 2, ${\ldots}$, s) with $s{\geq}2$, then ${\Delta}H_{m{\mathbb{X}}}(m{\mathbb{X}}-1)=3$, which is the number of lines containing exactly s-points in ${\mathbb{X}}$ for $m{\geq}2$ instead of $m{\geq}s+1$.