• Title/Summary/Keyword: TENSILE PROPERTY

Search Result 1,283, Processing Time 0.036 seconds

Preparation and Characterization of PVdF Microporous Membranes with PEG Additive for Rechargeble Battery (Poly(ethylene glycol)를 첨가한 이차전지용 poly(vinylidene fluoride) 미세다공성 분리막의 제조와 물성)

  • Nam, Sang-Yong;Jeong, Mi-Ae;Yu, Dae-Hyun;Koh, Mi-Jin;Rhim, Ji-Won;Byun, Hong-Sik;Seo, Myung-Su
    • Membrane Journal
    • /
    • v.18 no.1
    • /
    • pp.84-93
    • /
    • 2008
  • Poly(vinylidene fluoride) has received much attention in the last several years for the lithium secondary batteries. In this study, to enhance the porosity, PVdF was prepared by phase inversion method using as an additive, PEG (poly(ethylene glycol)), with N,N-dimethylformamid as a solvent. The pores are generated during the solvent and non-solvent exchange process in the coagulation bath filled with non-solvent (distilled water). The surface and cross-section of the membranes were observed with a scanning electron microscopy (SEM). The mechanical property of the membrane was determined by using an universal testing machine (UTM) and thermal property was verified by heat shrinkage. Uniformed sponge structure of PVdF-PEG membrane for the lithium secondary batteries was prepared with 10 wt% of PEG concentration in the PVdF-PEG solution. Porosity, elongation and tensile strengh of the membrane were 87%, 75.45%, and 275. 27 MPa respectively.

A Study for the Mechanical Properties with Infill Rate in FDM Process to Fabricate the Small IoT Device (소형 IoT 기기 제작을 위한 FDM 프린팅 공정에서의 내부채움에 따른 물성치 변화 연구)

  • Ahn, Il-Hyuk
    • Journal of Internet of Things and Convergence
    • /
    • v.6 no.3
    • /
    • pp.75-80
    • /
    • 2020
  • Recently, the size of the IoT sensor has been decreased and the collecting direction of the IoT sensor for acquiring the data have been changed from 2D to 3D. It makes sensor structure complex. In the fabrication of the complex structure, 3D printing technology has more useful than traditional manufacturing technologies. Among 3D printing technologies, FDM (fused deposition modeling) is a candidate technology to fabricate a small IoT sensor because the price of the machine and the material is cheap. In the FDM process, a 3D shape is made by depositing the melted filament. Recently, the patent of FDM technology is expired and cheat machines are developed based on the open-source. In the FDM process, mechanical properties of a fabricated part is affected by a lots of factors such as the kind of material and process parameters. Among them, infill is affecting the mechanical properties and the production lead time as well. In this work, a new method to optimize the FDM process with the consideration of mechanical property and production lead time was proposed. To verify the method, the fabrications were performed with the different infill rates. The results of tensile tests were analyzed to verify the proposed method.

Structure/Property of Adhesives and Adhesion Performance (접착제의 구조물성과 접착특성)

  • Hiroshi Mizumachi
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.29 no.1
    • /
    • pp.73-83
    • /
    • 1997
  • Most of the materials used in various industrial fields and also in our daily life are multi-component materials or composite materials, and it is well known that there are many cases where adhesion between the constituents within the bonded systems plays an important role. There are various types of performance evaluation tests for the bonded materials, among which tests for evaluating the bond performance under various conditions may be regarded as the most interesting ones for those engaged in work related to adhesion. I have studied on the mechanism of adhesion form the rheological standpoint with my colleagues, including some students from Korea, and I am very happy to be able to have a talk on some of our research works. In Japan, the so-called "adhesives" are usually classified into two categories;adhesives and pressure sensitive adhesives (PSA). Adhesives are the materials which solidify after bonding and are after used as the structural adhesives because the adhesive strength is comparatively strong. On the other hand, the pressure sensitive adhesives never solidify and are used as PSA tapes, labels or decals. About the adhesives, we have examined the dependence of adhesive strength(shear, tensile, peel) upon both temperature and rate of deformation, and found out some empirical rules which are applicable to most of the adhesive systems. We have also developed a simplified theory of adhesion, which is deseribed in terms of mechanical equivalent mode1 and a few failure criteria. Although some of the common rules can be accounted for according to this theory, it must be pointed out that a fracture mechanical approach ms inevitable especially in the region where the meehanical relaxation time of the adhesive is extremely large [W. W. Lim and H. Mizumachi]. About the pressure sensitive adhesives, we have studied on the PSA performance (peel, tack, holding power) as a function of both the viscoelastic properties and surface chemical properties of the materials, and found out some rules, and again we have developed a theory which deseribes the mechanism. And in addition, we have studied on the miscibility between linear polymers and oligomers, because PSA is generally manufactured by blending gums and tackifier resins. Many phase diagrams have been found and some of them have been analyzed on thermodynamic basis, and it became evident that the miscibility is a very important factor in PSA [H. J. Kin and H. Mizumachi]. In this presentation, I want to emphasize the fact that the adhesion performance is closely related to the structure/property of the adhesives.adhesives.

  • PDF

Studies on the Thermal and Rheological Properties of Polypropylene/Starch-MB Blends (폴리프로필렌/옥수수전분 블렌드의 열적 유변학적특성 연구)

  • Kim, Youn Cheol;Lee, Chang-Young
    • Applied Chemistry for Engineering
    • /
    • v.18 no.6
    • /
    • pp.557-561
    • /
    • 2007
  • Polypropylene (PP)/corn starch master batch (starch-MB) blends with different PP compositions of 40, 50, 60, and 80 wt% were prepared by melt compounding at $200^{\circ}C$, using lab scale Brabender mixer. The chemical structures and thermal properties of the PP/starch-MB blends were investigated by FT-IR, differential scanning calorimetry (DSC), and thermogravimetric analyzer (TGA). The chemical structure was confirmed by the existence of hydroxy group. There was no district change in melting temperature and melting enthalpy, and TGA curve indicated a decrease in degradation temperature with starch-MB content. The porosity change of blend was measured by scanning electron microscope (SEM), the degree of porosity on the blend surface increased with the starch-MB content. The rheological properties indicated an increase in complex viscosity, shear thinning tendency and elasticity with the starch-MB concentration. These effects were confirmed by an oscillatory viscometer at $200^{\circ}C$. From these results, it is found that 40 wt% is the optimum starch-MB concentration. The fiber was fabricated from PP60/MB40 with 40 wt% starch-MB and the porosity and tensile properties were investigated.

A STUDY ON THE ADHESION OF A SOFT LINER CONTAINING 4-META TO THE BASE METAL ALLOY AND ITS VISCOELASTIC PROPERTY

  • Park Hyun-Joo;Kim Chang-Whe;Kim Yung-Soo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.6
    • /
    • pp.732-746
    • /
    • 2003
  • Statement of problem. Soft lining materials, also referred to as tissue conditioning materials, tissue heating materials, relining materials, soft liners or tissue conditioners, were first introduced to dentistry by a plastic manufacturer in 1959. Since the introduction of the materials to the dental field, their material properties have been continually improved through the effort of many researchers. Soft lining materials have become widely accepted, particularly by prosthodontists, because of their numerous clinical advantages and ease of manipulation. Unfortunately, few reports have been issued upon the topic of increasing the bond strength between the base metal alloy used in cast denture bases and PMMA soft liner modified with 4-META, nor upon the pattern of debonding and material change in wet environment like a intra oral situation. Purpose. The purposes of this study were comparing the bond strength between base metal alloy used for the cast denture bases and PMMA soft liner modified with 4-META, and describing the pattern of debonding and material property change in wet environment like the intraoral situation. Material and Methods. This study consisted of four experiments: 1. The in vitro measurement of shear bond strength of the adhesive soft liner. 2. The in vitro measurement of shear bond strength of the adhesive soft liner after 2 weeks of aging. 3. A comparison of debonding patterns. 4. An evaluation the Relation time of modified soft liner. The soft liner used in this study was commercially available as Coe-soft (GC America.IL.,USA), which is provided in forms of powder and liquid. This is a PMMA soft liner commonly used in dental clinics. The metal primer used in this study was 4-META containing primer packed in Meta fast denture base resin (Sun Medical Co., Osaka, Japan). The specimens were formed in a single lap joint desist which is useful for evaluating the apparent shear bond strength of adhesively bonded metal plate by tensile loading. Using the $20{\times}20mm$ transparent grid, percent area of adhesive soft liner remaining on the shear area was calculated to classify the debonding patterns. To evaluate the change of the initial flow of the modified adhesive soft liner, the gelation time was measured with an oscillating rheometer (Haake RS150W/ TC50, Haake Co., Germany). It was a stress control and parallel plate type with the diameter of 35mm. Conclusion. Within the conditions and limitations of this study, the following conclusions were drawn as follows. 1. There was significant increase of bond strength in the 5% 4-META, 10% 4-META containing groups and in the primer coated groups versus the control group(P<0.05). 2. After 2 weeks of aging, no significant increase in bond strength was found except for the group containing 10% 4-META (P<0.05). 3. The gelation times of the modified soft liner were 9.3 minutes for the 5% 4-META containing liner and 11.5 minutes for the 10% 4-META liner. 4. The debonding patterns of the 4-META containing group after 2 weeks of aging were similar to those of immediaely after preparation, but the debonding pattern of the primer group showed more adhesive failure after 2 weeks of aging.

Physical Properties and Electrical Conductivity of PAN-based Carbon Fiber Reinforced Paper (PAN계 탄소섬유 강화 종이의 물리적 특성 및 전기전도도)

  • Jang, Joon;Lee, Chang-Ho;Park, Kwan-Ho;Ryu, Seung-Kon
    • Korean Chemical Engineering Research
    • /
    • v.44 no.6
    • /
    • pp.602-608
    • /
    • 2006
  • Carbon fiber (CF) reinforced papers using polyacrylonitrile (PAN) based CF and wood pulp were prepared by varying the lengths and the concentrations of CF, and the basis weight of paper to investigate adhesive state between CF and pulp, and physical properties and electrical conductivity of the paper. The reinforcement was caused by physical entanglement and adhesion at the interface of the different fibers rather than by chemical bonds. The tear strength and the thickness of the paper increased as increasing the concentration of CF, while the tensile and the burst strength of the paper decreased. The improved dispersion of CF in the paper was obtained from mixing shorter CF, but the maximum electrical conductivity of the paper was gained from mixing 10 mm chopped CF. The electrical conductivity of the paper increased sharply from 2 wt% to 8 wt% of CF showing S-curve, and increased linearly as increasing the basis weight of the paper. Therefore, in order to improve the electrical conductivity and the physical property of the paper, the increase of basis weight of the paper is also important as the increase of CF content in the paper.

A Study on the End-Uses Performance of Fabrics for Korean Folk Clothes (한복지의 소비성능에 관한 연구)

  • Sung Su-Kwang;Kwon Oh-Kyung;Hwang Ji-Young
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.15 no.2 s.38
    • /
    • pp.199-209
    • /
    • 1991
  • In this paper, the fabrics for Korean folk clothes(KFC) undergoes repeated laundering under given condition. After this cyclic laundering was applied, the mechanical properties of the specimen were measured using KES-F system in order to evaluated the end-use performance of fabrics for KFC. And also, the crease recovery of fabrics for KFC were measured by shirley crease recovery tester. 78 different kinds of commercial silk fabrics and polyester fabrics for KFC were used for this study. The experimental results were analysed statistically to relate the mechanical properties and the crease recovery of fabrics for KFC. Furthermore, these changes in dimensional stability, mechanical properties and handle of fabrics for KFC were discussed in comparison with those values for silk fabrics and polyester fabrics. The results obtained are as follows. 1. Regardless of materials, remarkable increase are observed in shrinkage of the fabrics for KFC about repeated laundering, but dull increase are observed in shrinkage after 10 cycles of the repeated laundering. On the other hand, slack extend are observed in dimensions after 20 cycles of the repeated laundering. The shrinkage of fabrics for KFC after 10 cycles of the lundering showed that the silk fabrics are $1.74{\pm}0.33\%$ (warp direction) and $1.35{\pm}0.23\%$ (weft direction) and the polyester fabrics are $1.45{\pm}0.22\%$ (warp direction) and $1.25{\pm}0.23\%$ (weft direction). 2. Except for tensile property, these changes in mechanical properties of fabrics for KFC by laundering have $\pm$ 16 range of bending, shearing, compression, surface, thickness & weight as compared with before laundering. Particularly, the LT and RT about $1\~3$ cycles of the repeated laundering showed remarkable decrease. And SMD, WC, T & W of fabrics for KFC by the laundering were more increased than one for original fabrics. But B, 2HB, G, 2HG, 2HGS were decreased more than one for original fabrics. 3. 'Stiffness', 'Anti-drape', 'Crispness' and 'Scroop' hand values decrease and'Fullness & softness', 'Flexibility & softness' hand values increase with repeated laundering. 4. Remarkable decrease are observed in crease recoveries about $1\~5$ cycles of the repeated lundering, but slack decrease are observed in crease recoveries after 5 cycles of repeated laundering. The crease recovery of fabrics for KFC have negative(-) correlation with LT, RT, G, RC and MMD, This fact implies that the smaller these values, the larger the crease recovery. The crease recovery of fabrics for KFC has a high degree of correlation with the mechanical properties such as shearing, compression, surface property. And also, the crease recovery are expected by measuring the mechanical properties such as G, 2HG, 2HGS, RC, WC, LC, MIU, MMD and SMD, according to the obtained regression equation.

  • PDF

Synthesis and Characterization of Composite Paper Using Polyamide Fiber and Surface Modified Microfibrillated Cellulose (표면 개질된 마이크로피브릴화 셀룰로오스를 이용한 폴리아마이드 섬유와의 복합페이퍼 제조 및 특성평가)

  • Lee, Jong-Hee;Lim, Jung-Hyurk;Kim, Ki-Young;Kim, Kyung-Min
    • Polymer(Korea)
    • /
    • v.38 no.1
    • /
    • pp.74-79
    • /
    • 2014
  • Microfibrillated cellulose (MFC) was chemically modified with two different silane coupling agents (3-aminopropyltriethoxysilane and 3-mercaptopropyltriethoxysilane) and lauroyl chloride. The surface modification of MFC was confirmed by infrared spectroscopy (FTIR), energy dispersive X-ray spectroscopy (EDX), and contact angle measurements. Composite paper was successfully prepared with surface modified MFC and polyamide (PA) fiber. The surface modification of MFC not only prevented aggregation of MFC but also improved adhesive property between PA fiber and surface modified MFC. It was impossible to prepare papers of only PA fiber because there is no binder to connect PA fibers. That is, surface modified MFC as a binder in PA fiber played a crucial role in making composite paper. Composite paper with silane modified MFC showed higher tensile strength and modulus than composite paper with lauroyl moiety modified MFC. The structure, morphology, and mechanical properties of composite paper were analyzed by scanning electron microscope (SEM) and universal testing machine (UTM).

Effect of Ni or Cu content on Microstructure and Mechanical Properties of Solution Strengthened Ferritic Ductile Cast Iron (고용강화 페라이트계 구상흑연주철의 미세조직 및 기계적 성질에 미치는 Ni 및 Cu의 영향)

  • Bang, Hyeon-Sik;Kim, Sun-Joong;Song, Soo-Young;Kim, Min-Su
    • Journal of Korea Foundry Society
    • /
    • v.41 no.5
    • /
    • pp.411-418
    • /
    • 2021
  • In order to experimentally investigate the effect of Ni or Cu addition on microstructure and mechanical properties of high Si Solution Strengthened Ferritic Ductile cast Iron (SSF DI), a series of lab-scale sand casting experiment were conducted by changing initial concentration of Ni up to 3.0wt% or Cu up to 0.9wt% in the alloy. It was found that increase in Ni or Cu content in the alloy leads to increase in strength properties and hardness as well as decrease in ductility. The higher Ni or Cu content the SSF DI has, the higher fraction of pearlite was observed. At similar levels of Ni or Cu contents in the alloy, higher pearlite area fraction was observed in the Cu-containing SSF DI than that in the Ni-containing SSF DI. When the effect of the microstructure on the mechanical properties of Ni-containing SSF DI was considered, Ni-containing SSF DI was found to have excellent strength and hardness as well as good elongation when the pearlite fraction was controlled less than 10%. As the pearlite fraction in the Ni-containing SSF DI exceeds 10%, however, it shows drastic decrease in elongation. Meanwhile, gradual increase in strength and hardness, and decrease in elongation with respect to increase in pearlite fraction were observed in Cu-containing SSF DI. The different microstructure-mechanical property relationships between Ni-containing and Cu-containing SSF DI were due to the combined effect of the relatively weak pearlite stabilizing effect of Ni compared to that of Cu in high Si SSF DI, and matrix strengthening effect caused by the different amounts of those alloying elements required for similar pearlite fraction.

Comparision of the Properties of UV-cured Polyurethane Acrylates Containing Different Diisocyanates and Low Molecular Weight Diols

  • Yoo, Hye-Jin;Lee, Young-Hee;Kwon, Ji-Yun;Kim, Han-Do
    • Fibers and Polymers
    • /
    • v.2 no.3
    • /
    • pp.122-128
    • /
    • 2001
  • UV-curable polyurethane acrylate prepolymers were prepared from diisocyanates [isophorone diisocyanate (IPDI), 2,4-toluene diisocyanate (TDI), or 4,4'-dicyclohexylmethane diisocyanate (H$_{12}$MDI)], diols [ethylene glycol (EG), 1,4-butane diol (BD), or 1,6-hexane diol (HD)], polypropylene glycol as a polyol. UY-curable mixtures were formulated from the prepolymer (90 wt%), reactive diluent monomer trimethylol propane triacrylate (10 wt%). and photoinitiator 1-hydroxycy-clohexyl ketone (3 wt% based on prepolymer/diluent). The effects of different diisocyanates/low molecular weigh dial on the dynamic mechanical thermal properties and elastic recovery of UV-cured polyurethane acrylate films were examined. The tensile storage modulus increased a little in the order of EG > BD > HD at the same diisocyanate. Two loss modulus peaks for all samples are observed owing to the glads transition of softs segments ($T_gh$) and the glass transition temperature of hard segments ($T_gh$). For the same diisocyanate, $T_gh$, decreased, however, $T_gh$ increased, in the order of HD > BD > EG. The elastic recovery also increased in the order of HD > BD > EG at the same diisocyanate. In case of same diols, $T_gh$ increased in the order of $H_12$MDl > TDI > IPDI significantly. The ultimate elongation and elastic recovery increased in the order of TDI > IPDI > $H_12$MDl at the same diol.l.

  • PDF