Comparision of the Properties of UV-cured Polyurethane Acrylates Containing Different Diisocyanates and Low Molecular Weight Diols

  • Yoo, Hye-Jin (Departement of Textile Engineering, College of Engineering, Pusan National University) ;
  • Lee, Young-Hee (Departement of Textile Engineering, College of Engineering, Pusan National University) ;
  • Kwon, Ji-Yun (Departement of Textile Engineering, College of Engineering, Pusan National University) ;
  • Kim, Han-Do (Departement of Textile Engineering, College of Engineering, Pusan National University)
  • Published : 2001.09.01

Abstract

UV-curable polyurethane acrylate prepolymers were prepared from diisocyanates [isophorone diisocyanate (IPDI), 2,4-toluene diisocyanate (TDI), or 4,4'-dicyclohexylmethane diisocyanate (H$_{12}$MDI)], diols [ethylene glycol (EG), 1,4-butane diol (BD), or 1,6-hexane diol (HD)], polypropylene glycol as a polyol. UY-curable mixtures were formulated from the prepolymer (90 wt%), reactive diluent monomer trimethylol propane triacrylate (10 wt%). and photoinitiator 1-hydroxycy-clohexyl ketone (3 wt% based on prepolymer/diluent). The effects of different diisocyanates/low molecular weigh dial on the dynamic mechanical thermal properties and elastic recovery of UV-cured polyurethane acrylate films were examined. The tensile storage modulus increased a little in the order of EG > BD > HD at the same diisocyanate. Two loss modulus peaks for all samples are observed owing to the glads transition of softs segments ($T_gh$) and the glass transition temperature of hard segments ($T_gh$). For the same diisocyanate, $T_gh$, decreased, however, $T_gh$ increased, in the order of HD > BD > EG. The elastic recovery also increased in the order of HD > BD > EG at the same diisocyanate. In case of same diols, $T_gh$ increased in the order of $H_12$MDl > TDI > IPDI significantly. The ultimate elongation and elastic recovery increased in the order of TDI > IPDI > $H_12$MDl at the same diol.l.

Keywords

References

  1. J. Appl. Polym. Sci. v.30 T.A.Speckhard;K.K.S.Hwang;S.B.Lin;S.Y.Tsay;M.Koshiba;Y.S.Ding;S.L.Cooper
  2. J. Appl. Polym. Sci. v.67 H.D.Kim;T.W.Kim
  3. J. Appl. Polym. Sci. v.42 H.B.Kim;S.G.Kang;C.S.Ha
  4. J. Appl. Polym. Sci. v.60 B.K.Kim;K.H.Kim
  5. J. Appl. Polym. Sci. v.60 B.Nabeth;J.F.Gerard;J.P.Pascault
  6. Polymer Degradation and Stability v.64 C.Decker;K.Zahouily
  7. J. Appl. Polym. Sci. v.62 S.Velankar;J.Pazos;S.L.Cooper
  8. Chem. Eng. Commun. v.30 S.B.Lin;S.Y.Tsay;T.A.Speckhard;K.K.S.Hwang;J.J.Jezerc;S.L.Cooper
  9. J. Mater. Sci. v.17 M.Koshiba;K.K.S.Hwang;S.K.Foley;D.J.Yarusso
  10. J. Appl. Polym. Sci. v.42 Y.C.Lai;L.Baccei
  11. Polymer v.41 T.L.Wang;F.J.Huang
  12. J. Korean Fiber Soc. v.36 D.J.Lee;J.Y.Choi;H.D.Kim
  13. Eur. Polym. J. v.36 M.Debowski;A.Balas
  14. Szycher’s Handbook of Polyurethanes M.Szycher
  15. Szycher’s Handbook of Polyurethanes M.Szycher
  16. J. Polym. Sci., Part A, Poly. Chem. v.34 J.Chen;J.P.Pascault;M.Taha
  17. J. Appl. Polym. Sci. v.38 S.Nakazato;T.Amari;T.Yamaoka
  18. J. Korean Fiber Soc. v.34 T.W.Lee(et al.)