• Title/Summary/Keyword: TEMPERATURE CONDITION

Search Result 11,268, Processing Time 0.042 seconds

Development of an equipment preventing overheated in a car using the solar cell

  • Han, Jong-Soo;Seo, Chang-Jun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.938-941
    • /
    • 2003
  • In this paper we develop an equipment which prevents vehicles from overheating their inside due to exposure to direct sunlight in summer. Overheating of inside vehicle may give rise to accidents, for instances, dying from suffocation, the deformation of its internal equipment and the explosion from the cracks of its internal parts etc.. The equipment is operated under no starting engine. We adjust the overheating of the inside vehicle by operating the equipment. This equipment checks the temperature of the inside vehicle using temperature sensor. If the temperature increases more than reference temperature(a condition which can be given by the driver), the equipment will operate until the temperature of the inside decreases to the given temperature. Its power is obtained from solar cell. So the equipment keeps away overheating accidents as well as provides the drivers with optimized condition. And also it increases the ability of original car battery through solar cell.

  • PDF

A Study of the Friction Characteristics of Plastics on Lubricated Condition (윤활상태에서 플라스틱의 마찰특성에 관한 연구)

  • 강석춘
    • Tribology and Lubricants
    • /
    • v.8 no.1
    • /
    • pp.48-55
    • /
    • 1992
  • The friction characteristic of plastics (PTFE, Nylon, Acetal and phenolic) was studied on the lubricated condition with a pin on disk machine. Mineral oil without additive (base oil) and water were used as liquid lubricants at the controlled temperature. From the experimental work, it was found out that the coefficient of friction of plastics was controlled by the mechanical properities of plastic more than that of liquid for various load and temperature. Viscosity of liquid has affected on the friction only at low temperature under lighb load. Among the tested plastics, the coefficient of friction of PTFE was the lowest under light load and at low temperature while Nylon at medium load and temperature, and Acetal at heavy load and high temperature. The coefficient of friction of soft plastics like PTFE and Nylon were increased as the load and temperature were increased, while that of hard plastic (Acetal) was decreased and that of thermo setting plastic (phenolic) was mixed. Also for soft plastics, the coefficient of friction under heavy load was always higher than that under light load, while hard plastic was vice versa.

A Study on the Subcooled Boiling Heat Transfer in a Horizontal Tube (수평관내 냉매의 과냉비등열전달에 관한 연구)

  • 김종헌;김철환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.18 no.3
    • /
    • pp.26-33
    • /
    • 1994
  • A new reliable method to prediet the axial vapor fraction distribution from the measured probability density of the liquid bulk temperature is suggested in this paper. And also the actual quality of the subcooled boiling flow is easily calculated from the liquid bulk temperature. When the heat generating rate is reached to the CHF value, the sharp wall temperature increasing by the wall temperature fluctuation is occurred under the CHF condition. This paper presents the simple wall temperature fluctuation model of transition boiling by the repeating process of overheating and quenching, when the coalescent bubble passes slowly near the wall. Experiments for the subcooled R-113 flow are carride-out in the range of(0.9399~4.461)${\times}10^6$kg/$m^2$hr mass velocity and 10~3$0^{\circ}C$ intel subcooling condition.

  • PDF

Strain Behavior of Ultra-high-strength Concrete under High Temperature and Loading (고온 및 재하에 따른 초고강도콘크리트의 변형거동)

  • Kim, Gyu-Yong;Nam, Jeong-Soo;Choe, Gyeong-Cheol;Yoon, Min-Ho;Hwang, Eui-Chul;Baek, Jae-Uk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.86-87
    • /
    • 2017
  • The high-temperature creep of Ultra-High-Strength Concrete (UHSC) has been investigated in this study. The purpose of this study is to evaluated total strain and high-temperature creep at elevated temperatures under loading condition of UHSC. As results, Total strain of UHSC increased showing shrinkage with increasing compressive strength. The high-temperature creep of UHSC increased with the temperature and higher level of compressive strength showed bigger high-temperature creep.

  • PDF

Analysis of the relationship between operational condition and temperature distribution in a small incinerator (소형 소각로에서 운전조건과 온도분포 사이의 관계 분석)

  • Kim, Sung-Joon;Park, Jong-Hwan;Chun, Bong-Jun
    • Journal of Industrial Technology
    • /
    • v.20 no.B
    • /
    • pp.63-70
    • /
    • 2000
  • One aims to find out how the operation condition of secondary inlet angle effects the temperature distribution inside a small incinerator. A finite volume commercial code, PHONICS, is used to simulate the temperature field in an incinerator. The computational grid system is constructed by Multi-Block technique. The governing equations based on the curvilinear coordinates are used. Numerical experiments are done with the five variations of secondary air inlet. The temperature distribution is quantified by the statistical deviation of temperature in an incinerator. The computational analysis says that the certain angle of secondary air inlet could improve the uniformity of temperature distribution in an incinerator.

  • PDF

Effect of Adhesive Shear Strength of CFRP/Ni-Cr Alloy Under Severe Environmental Condition (가혹 환경이 복합재/Ni-Cr 합금 접착전단강도에 미치는 영향 연구)

  • Cho, Hyeon-Tae;Park, Seong-Min;Kim, Min-Jun;Hoang, Van-Tho;Kim, Hak-Inn;Son, Myung-Sook;Ahn, Jong-Kee;An, Ji-Min;Choi, Jin-Ho;Nam, Young-Woo;Kweon, Jin-Hwe
    • Composites Research
    • /
    • v.33 no.5
    • /
    • pp.275-281
    • /
    • 2020
  • The mechanical property related to lap shear strength of the joint structure between carbon fiber reinforced polymer (CFRP) composite and metal (Ni-Cr Alloy) under varying environmental conditions (temperature and humidity) was studied in order to apply to the aircraft fan blade. Room temperature dry (RTD), elevated temperature wet (ETW), and cold temperature dry (CTD) environmental conditions were chosen for investigation based on the flight conditions of aircraft. Lap shear strength tests were conducted according to ASTM Standard D3528 to evaluate the shear strength. The microstructure characteristic of failure zone was analyzed by SEM images to check the adhesive shear strength with the three environmental conditions. In comparison with shear strength for the RTD condition, the shear strength in the ETW condition was reduced by 72.8% while those for the CTD condition increased by 56.5%. The moisture absorption and high temperature in ETW condition strongly had an affect on mechanical property of adhesive, while cold temperature could enhance the adhesive shear strength due to the higher brittleness.

Effects of Elevated $CO_2$ and Temperature on Seedling Emergence of Herbs in a Japanese Temperate Grassland

  • Lee, Jae-Seok;Takehisa Oikawa;Shigeru Mariko;Lee, Ho-Joon
    • The Korean Journal of Ecology
    • /
    • v.23 no.6
    • /
    • pp.423-429
    • /
    • 2000
  • To understand the effects of elevated $CO_2$ concentration and temperature on seedling emergence of seven herbaceous species, the seedling emergence was monitored between November 1997 and May 1998 using a temperature gradient chamber and a $CO_2$-temperature gradient chamber. Experiment was conducted under current ambient condition (Control plot), 2$^{\circ}C$-warmed condition with ambient $CO_2$ (T2 Plot), 4$^{\circ}C$-warmed condition with ambient $CO_2$ (T4 plot). and 4$^{\circ}C$-warmed condition with 1.8 fold of ambient $CO_2$ (CT4 plot). Species tested in this study were Digitaria adscendens, Echinochloa crus-galli, Panicum bisulcatum, Setaria viridis. Oenothera biennis, Andropogon virginicus, and Imperata cylindrica. Each species often dominates in the herbaceous stage of secondary succession in Japan. The mean seedling emergence times for all species were significantly increased to 23.6 and 32.2 d in the T2 and T4 plot compared to the Control plot, respectively. The most sensitive and insensitive species in seedling emergence time in T2 plot were O. biennis and D. adscendens, respectivel.y, and those in the T4 and CT4 plot were I. cylindrica and D. adscendens, E. crus-galli and A. virginicus, respectively. All experimental species showed no significant difference in the seedling emergence rate between treatments except for O. biennis and I. cylindrica. O. biennis showed a great decrease in the seedling emergence rate from 83.3% in the Control plot to 38.0%, 14.7%, and 29.3% in the T2, T4, and CT4 plot, respectively. Elevated $CO_2$ had very little effect on the seedling emergence. From these observations, it is expected that increased temperature would greatly advance the vegetative recovery time after disturbance through the advancement of seedling emergence time.

  • PDF

Grain Evolution during Bulge Blow forming of AZ31 Alloy (AZ31 합금의 온간 부풀림 성형시 결정립 변화에 관한 연구)

  • Baek, S.G.;Lee, Y.S.;Lee, J.H.;Kown, Y.N.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.452-455
    • /
    • 2008
  • In the present study, blow forming characteristics of commercially roiled AZ31 alloy sheets were investigated. Two different kinds of AZ31 sheets were originally fabricated by using direct casting and strip casting methods respectively. Both sheets have similar grain sizes of about $7{\mu}m$ with a relatively equiaxed structure after rolling. A series of tensile tests were carried out to get flow behavior in terms of temperature and strain rate. Also, grain size effect was investigated by annealing as-received sheet at elevated temperatures. Elongation increased with temperature increment as well expected. However, the differences in tensile test condition did not give much difference in elongation even at the temperature range where a large elongation would be expected with such as fine grain of $7{\mu}m$. Blow forming experiments showed that forming condition did not result in higher difference in dome height. However, the interesting feature from this study was that formability of this AZ31 alloy got different with stress condition. Firstly, biaxial stress condition might result in lower temperature and strain rate dependencies compared to uniaxial tension results for both DC and SC sheets. Secondly, DC showed slower grain growth in uniaxial tension than in biaxial stress state while SC has much higher grain growth rage in uniaxial tension than in bulging.

  • PDF

Development of the Wireless Technique for Health Monitoring of Superconducting Motor (초전도 모터의 상태진단을 위한 데이터 신호 무선처리 기법개발)

  • Seo, K.C.;Lee, M.R.;Lee, J.H.;Kwon, Y.K.;Shon, M.H.
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.829-834
    • /
    • 2004
  • This research is to development advanced health(condition) monitoring system of superconducting motors. Development of advanced condition monitoring systems offers the prospect of improved performance, assessment, and operation, simplified design, enhanced safety, and reduced overall cost of advanced and next generation superconducting motor. For advanced and next generation superconducting motor design, the opportunity exists to develop and implement real-time and continuous monitoring systems by integrating wireless and computational technique. Generally, condition monitoring and control of temperature is essential for managing the superconducting motor components, rotor and structures. In this research, development of advanced monitoring in low temperature and high speed operating environments offers the potential to greatly improve the control of harsh environments. In conventional method, slip rings have been used to acquire data from these sensors. However, the increase of sensors leads to vibration of the rotation axis and noise signals due to kinematics contact. In this study, the wireless data acquisition technique was employed to develop more stable monitoring system adequate for high speed rotating system.

  • PDF

Survey evaluation of thermal boundary condition in the inside and outside of double skin facade

  • Shin, Hyun-Cheol;Jang, Gun-Eik
    • KIEAE Journal
    • /
    • v.15 no.4
    • /
    • pp.29-35
    • /
    • 2015
  • Purpose: Double skin facade is a representative advantageous passive technology of building skin in the aspect of energy saving and environment improvement, reduces heat loss with buffer space in winter season and enhances indoor air and comfort of residents by activating natural ventilation in mid-season. However, in summer season, temperature increase in the intermediate space due to solar energy from exterior transparent skin could be a potential problem; also, relatively weak buoyancy of air caused by low density difference between double-skin facade could increase cooling load as air of intermediate space in high temperature hangs. However, proof data is insufficient to objectify such phenomenon. Method: In this study, researchers surveyed air temperature of intermediate space and airflow and diagnosed its cause targeting on applied multistory facade in the building which gives thermal uncomfort to residents. Also, the researchers produced Solar-air heat transfer coefficient meter, measured thermal boundary condition of double-skin facade, and presented the result of measurement as an objectified verification material regarding overheating phenomenon in the intermediate space of double-skin facade in summer season. Result: Inefficient condition was verified that total heat increases and overheating due to insufficient natural ventilation in multistory facade. In addition, logic behind preceding research was objectified and verified regarding high temperature phenomenon in the intermediate space which could increase cooling load in summer season.