• Title/Summary/Keyword: TEMAHf

Search Result 5, Processing Time 0.021 seconds

The Effects of Thermal Decomposition of Tetrakis-ethylmethylaminohafnium (TEMAHf) Precursors on HfO2 Film Growth using Atomic Layer Deposition

  • Oh, Nam Khen;Kim, Jin-Tae;Ahn, Jong-Ki;Kang, Goru;Kim, So Yeon;Yun, Ju-Young
    • Applied Science and Convergence Technology
    • /
    • v.25 no.3
    • /
    • pp.56-60
    • /
    • 2016
  • The ALD process is an adequate technique to meet the requirements that come with the downscaling of semiconductor devices. To obtain thin films of the desired standard, it is essential to understand the thermal decomposition properties of the precursors. As such, this study examined the thermal decomposition properties of TEMAHf precursors and its effect on the formation of $HfO_2$ thin films. FT-IR experiments were performed before deposition in order to analyze the thermal decomposition properties of the precursors. The measurements were taken in the range of $135^{\circ}C-350^{\circ}C$. At temperatures higher than $300^{\circ}C$, there was a rapid decrease in the absorption peaks arising from vibration of $Sp^3$ C-H stretching. This showed that the precursors experienced rapid decomposition at around $275^{\circ}C-300^{\circ}C$. $HfO_2$ thin films were successfully deposited by Atomic Layer Deposition (ALD) at $50^{\circ}C$ intervals between $150^{\circ}C$ to $400^{\circ}C$; the deposited films were characterized using a reflectometer, X-ray photoelectron spectroscopy (XPS), Grazing Incidence X-ray Diffraction (GIXRD), and atomic force microscopy (AFM). The results illustrate the relationship between the thermal decomposition temperature of TEMAHf and properties of thin films.

Properties of HfO2 Insulating Film Using the ALD Method for Nonvolatile Memory Application (비휘발성 메모리 응용을 위한 ALD법을 이용한 HfO2 절연막의 특성)

  • Jung, Soon-Won;Koo, Kyung-Wan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.8
    • /
    • pp.1401-1405
    • /
    • 2010
  • We have successfully demonstrated of metal-insulator-semiconductor (MIS) capacitors with $HfO_2$/p-Si structures. The $HfO_2$ film was grown at $200^{\circ}C$ on H-terminated Si wafer by atomic layer deposition (ALD) system. TEMAHf and $H_2O$ were used as the hafnium and oxygen sources. A cycle of the deposition process consisted of 0.1 s of TEMAHf pulse, 10 s of $N_2$ purge, 0.1 s of $H_2O$ pulse, and 60 s of $N_2$ purge. The 5 nm thick $HfO_2$ layer prepared on Si substrate by ALD exhibited excellent electrical properties, including low leakage currents, no mobile charges, and a good interface with Si.

Deposition and Electrical Properties of Al2O3와 HfO2 Films Deposited by a New Technique of Proximity-Scan ALD (PS-ALD) (Proximity-Scan ALD (PS-ALD) 에 의한 Al2O3와 HfO2 박막증착 기술 및 박막의 전기적 특성)

  • Kwon, Yong-Soo;Lee, Mi-Young;Oh, Jae-Eung
    • Korean Journal of Materials Research
    • /
    • v.18 no.3
    • /
    • pp.148-152
    • /
    • 2008
  • A new cost-effective atomic layer deposition (ALD) technique, known as Proximity-Scan ALD (PS-ALD) was developed and its benefits were demonstrated by depositing $Al_2O_3$ and $HfO_2$ thin films using TMA and TEMAHf, respectively, as precursors. The system is consisted of two separate injectors for precursors and reactants that are placed near a heated substrate at a proximity of less than 1 cm. The bell-shaped injector chamber separated but close to the substrate forms a local chamber, maintaining higher pressure compared to the rest of chamber. Therefore, a system configuration with a rotating substrate gives the typical sequential deposition process of ALD under a continuous source flow without the need for gas switching. As the pressure required for the deposition is achieved in a small local volume, the need for an expensive metal organic (MO) source is reduced by a factor of approximately 100 concerning the volume ratio of local to total chambers. Under an optimized deposition condition, the deposition rates of $Al_2O_3$ and $HfO_2$ were $1.3\;{\AA}/cycle$ and $0.75\;{\AA}/cycle$, respectively, with dielectric constants of 9.4 and 23. A relatively short cycle time ($5{\sim}10\;sec$) due to the lack of the time-consuming "purging and pumping" process and the capability of multi-wafer processing of the proposed technology offer a very high through-put in addition to a lower cost.

Characterization of $HfO_2$/Hf/Si MOS Capacitor with Annealing Condition (열처리 조건에 따른 $HfO_2$/Hf/Si 박막의 MOS 커패시터 특성)

  • Lee, Dae-Gab;Do, Seung-Woo;Lee, Jae-Sung;Lee, Yong-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.8-9
    • /
    • 2006
  • Hafnium oxide ($HfO_2$) thin films were deposited on p-type (100) silicon wafers by atomic layer deposition (ALD) using TEMAHf and $O_3$. Prior to the deposition of $HfO_2$ films, a thin Hf ($10\;{\AA}$) metal layer was deposited. Deposition temperature of $HfO_2$ thin film was $350^{\circ}C$ and its thickness was $150\;{\AA}$. Samples were then annealed using furnace heating to temperature ranges from 500 to $900^{\circ}C$. The MOS capacitor of round-type was fabricated on Si substrates. Thermally evaporated $3000\;{\AA}$-thick AI was used as top electrode. In this work, We study the interface characterization of $HfO_2$/Hf/Si MOS capacitor depending on annealing temperature. Through AES(Auger Electron Spectroscopy), capacitance-voltage (C-V) and current-voltage (I-V) analysis, the role of Hf layer for the better $HfO_2$/Si interface property was investigated. We found that Hf meta1 layer in our structure effective1y suppressed the generation of interfacial $SiO_2$ layer between $HfO_2$ film and silicon substrate.

  • PDF

The Fabrication of MOS Capacitor composed of $HfO_2$/Hf Gate Dielectric prepared by Atomic Layer Deposition (ALD 방법으로 증착된 $HfO_2$/Hf 박막을 게이트 절연막으로 사용한 MOS 커패시터 제조)

  • Lee, Dae-Gab;Do, Seung-Woo;Lee, Jae-Sung;Lee, Yong-Hyun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.5
    • /
    • pp.8-14
    • /
    • 2007
  • In this paper, $HfO_2$/Hf stacked film has been applied as the gate dielectric in MOS devices. The $HfO_2$ thin film was deposited on p-type (100) silicon wafers by atomic layer deposition (ALD) using TEMAHf and $O_3$ as precursors. Prior to the deposition of the $HfO_2$ film, a thin Hf metal layer was deposited as an intermediate layer. Round-type MOS capacitors have been fabricated on Si substrates with 2000${\AA}$-thick Al or Pt top electrode. The prepared film showed the stoichiometric components. At the $HfO_2$/Si interface, both Hf-Si and Hf-Si-O bonds were observed, instead of Si-O bond. The sandwiched Hf metal layer suppressed the growing of $SiO_x$ layer so that $HfSi_xO_y$ layer was achieved. It seems that the intermediate Hf metal layer has a benefit for the enhancement of electric characteristics of gate dielectric in $HfO_2$/Si structure.