• Title/Summary/Keyword: TE4

Search Result 1,195, Processing Time 0.033 seconds

A Study on the Stability $Te_{100-x}Ge_x$ Thin Films for Optical Recording (광기록을 위한 Te-Ge 박막의 안정도에 관한 연구)

  • Chung, Hong-Bay;Lee, Young-Jong;Im, Sook
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.229-231
    • /
    • 1996
  • We are studied the stability of amorphous and crystalline $Te_{100-x}Ge_x$ (x=10, 15. 25, 40, 50, 60 at.%) thin films by observing the degradation in 8O%RH/$66^{\circ}C$ environment and the reflectance ratio. The degradation was observed with the transmittance and reflectance, the reflectance was measured at 780nm in the wavelength range of diode laser. In amorphous $Te_{100-x}Ge_x$ thin films of below x=4O at.%, the degradation was observed, the thin film of x=10 at.% was shown the degradation degree of 12.5%. In crystalline $Te_{100-x}Ge_x$ thin films of x=10, 40 at.%, the degradation degree were 12.8%, 13%, respectively. The reflectance ratio were shown above 20% in. all composition ratio. Therefore, we are expected that $Te_{100-x}Ge_x$ thin films of x=50, 60 at.% has the long life for the optical recording media.

  • PDF

Disign of $Hg_{1-x}Cd_xTe$ OMVPE System and ARIIV Reactor Chamber ($Hg_{1-x}Cd_xTe$ OMVPE System 과 ARIIV Reactor Chamber의 설계 및 제작)

  • ;J.D. Parsons
    • Journal of the Korean Vacuum Society
    • /
    • v.2 no.4
    • /
    • pp.410-415
    • /
    • 1993
  • The direct growth OMVPE system, designed specificallyfor direct growth of Hg1-xCdxTe using annular rectant inlet inverted verticla (ARIIV) reactor, was constructed. This paper presents the detailed technical approach on a newly designed ARIIV reactor that increases Hg incorporation, imposes uniformity, and avoids the needs for temperature processing to create alloys by inter diffusion approach.

  • PDF

$Hg_1_xCd_xTe$를 이용한 적외선 검지소자기술

  • Maeng, Seong-Jae;Lee, Jae-Jin;Kim, Jin-Seop
    • Electronics and Telecommunications Trends
    • /
    • v.3 no.4
    • /
    • pp.45-56
    • /
    • 1988
  • 적외선검출기용 반도체소자($Hg_1_xCd_xTe$)의 특성 및 응용에 대하여 조사하고, 국외의 연구현황과 국내의 문제점 및 향후 전망에 대하여 기술하였다. $Hg_1_xCd_xTe$는 조성에 따라 검지기 파장영역을 조절할 수 있으며, 그 자체에 검지부와 신호처리부를 집적할 수 있는 monolithic기술이 유망하여 앞으로 중요한 반도체중의 하나로 확립될 것이다.

High-Resolution X-Ray Photoelectron Spectroscopy Study of a Sb2Te3 Thin Film with the Polycrystalline Phase (고해상도 엑스선 광전자 분광법을 이용한 다결정구조의 안티몬-테레니움 박막 연구)

  • Lee, Y.M.;Kim, K.;Shin, H.J.;Jung, M.C.;Qi, Y.
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.6
    • /
    • pp.348-353
    • /
    • 2012
  • We investigated chemical states of a $Sb_2Te_3$ thin film with the polycrystalline phase by using high-resolution x-ray photoelectron spectroscopy with synchrotron radiation. The $Sb_2Te_3$ thin film was formed by sputtering. The rhombohedral phase was confirmed by x-ray diffraction. To remove the surface oxide, we performed $Ne^+$ ion sputtering for 1 hour with the beam energy of 1 kV and post-annealing at $100^{\circ}C$ for 5 min in ultra-high vacuum. We obtained the Te and Sb 4d core-levels spectra with the peaks at the binding energies of 40.4 and 33.0 eV, respectively. The full-width of half maximum of both the Te and Sb $4d_{5/2}$ core-levels is 0.9 eV. The Te and Sb core-levels only show a single chemical state, and we also confirmed the stoichiometry of approximately 2 : 3.

Electric Property of $Bi_{0.4}Ti_3Sb_{1.6}$ Thermoelectric Material Prepared by Powder Metallurgy Process

  • Shin, Sung-Chul;Lee, Gil-Geun;Kim, Woo-Yeol;Ha, Gook-Hyun
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.684-685
    • /
    • 2006
  • In the present study, the powder metallurgical fabrication of $Bi_{0.4}Te_3Sb_{1.6}$ thermoelectric materials has been studied with specific interest to control the microstructure by the mechanical grinding process. The $Bi_{0.4}Te_3Sb_{1.6}$ thermoelectric powders with a various particle size distribution were prepared by the combination of the mechanical milling and blending processes. The specific electric resistivity of the $Bi_{0.4}Te_3Sb_{1.6}$ sintered bodies mainly depended on the orientation of the crystal structure rather than the particle size of the raw powders.

  • PDF

Electrical Switching Characteristics of Ge1Se1Te2 Chalcogenide Thin Film for Phase Change Memory

  • Lee, Jae-Min;Yeo, Cheol-Ho;Shin, Kyung;Chung, Hong-Bay
    • Transactions on Electrical and Electronic Materials
    • /
    • v.7 no.1
    • /
    • pp.7-11
    • /
    • 2006
  • The changes of the electrical conductivity in chalcogenide amorphous semiconductors, $Ge_{1}Se_{1}Te_{2}$, have been studied. A phase change random access memory (PRAM) device without an access transistor is successfully fabricated with the $Ge_{1}Se_{1}Te_{2}$-phase-change resistor, which has much higher electrical resistivity than $Ge_{2}Sb_{2}Te_{5}$ and its electric resistivity can be varied by the factor of $10^5$ times, relating with the degree of crystallization. 100 nm thick $Ge_{1}Se_{1}Te_{2}$ thin film was formed by vacuum deposition at $1.5{\times}10^{-5}$ Torr. The static mode switching (DC test) is tested for the $100\;{\mu}m-sized$ $Ge_{1}Se_{1}Te_{2}$ PRAM device. In the first sweep, the amorphous $Ge_{1}Se_{1}Te_{2}$ thin film showed a high resistance state at low voltage region. However, when it reached to the threshold voltage, $V_{th}$, the electrical resistance of device was drastically reduced through the formation of an electrically conducting path. The pulsed mode switching of the $20{\mu}m-sized$ $Ge_{1}Se_{1}Te_{2}$ PRAM device showed that the reset of device was done with a 80 ns-8.6 V pulse and the set of device was done with a 200 ns-4.3 V pulse.

HgCdTe Junction Characteristics after the Junction Annealing Process (열처리 조건에 따른 HgCdTe의 접합 특성)

  • Jeong, Hi-Chan;Kim, Kwan;Lee, Hee-Chul;Kim, Hong-Kook;Kim, Jae-Mook
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.2
    • /
    • pp.89-95
    • /
    • 1995
  • The structure of boron ion-implanted pn junctio in the vacancy-doped p-type HgCdTe was investigated with the differential Hall measurement. The as-implanted junction showed the electron concentration as high as 1${\times}10^{18}/cm^{3}$ and the junction depth of 0.6.mu.m. When the HgCdTe junction was heated in oven, the electron concentration near the junction decreased and the junction depth increased as the annealing temperature and time increased. The junction structure after the thermal annealing was n$^{+}$/n$^{-}$/p. For the 200.deg. C 20min annealed sample, the electron mobility was 10$^{4}cm^{2}/V{\cdot}$s near the surface(n$^{+}$), and was larger thatn 10$^{5}cm^{2}/V{\cdot}$s near the junction(n$^{+}$). The junction formation mechanism is conjectured as follows. When HgCdTe is ion-implanted, the ion energy generates crystal defecis and displaced Hg atoms HgCdTe is ion-implanted, the ion energy generates crystal defecis and displaced Hg atoms near the surface. The displaced Hg vacancies diffuse in easily by the thernal treatment and a fill the Hg vacancies in the p-HgCdTe substrate. With the Hg vacancies filled completely, the GfCdTe substrate becomes n-type because of the residual n-type impurity which was added during the wafer growing. Therefore, the n$^{+}$/n$^{-}$/p regions are formed by crystal defects, residual impurities, and Hg vacancies, respectively.

  • PDF

InSbTe phase change materials deposited in nano scaled structures by metal organic chemical vapor deposition (MOCVD법에 의해 나노급 구조 안에 증착된 InSbTe 상변화 재료)

  • Ahn, Jun-Ku;Park, Kyung-Woo;Cho, Hyun-Jin;Hur, Sung-Gi;Yoon, Soon-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.52-52
    • /
    • 2009
  • To date, chalcogenide alloy such as $Ge_2Sb_2Te_5$(GST) have not only been rigorously studied for use in Phase Change Random Access Memory(PRAM) applications, but also temperature gap to make different states is not enough to apply to device between amorphous and crystalline state. In this study, we have investigated a new system of phase change media based on the In-Sb-Te(IST) ternary alloys for PRAM. IST chalcogenide thin films were prepared in trench structure (aspect ratio 5:1 of length=500nm, width=100nm) using Tri methyl Indium $(In(CH_3)_4$), $Sb(iPr)_3$ $(Sb(C_3H_7)_3)$ and $Te(iPr)_2(Te(C_3H_7)_2)$ precursors. MOCVD process is very powerful system to deposit in ultra integrated device like 100nm scaled trench structure. And IST materials for PRAM can be grown at low deposition temperature below $200^{\circ}C$ in comparison with GST materials. Although Melting temperature of 1ST materials was $\sim 630^{\circ}C$ like GST, Crystalline temperature of them was ~$290^{\circ}C$; one of GST were $130^{\circ}C$. In-Sb-Te materials will be good candidate materials for PRAM applications. And MOCVD system is powerful for applying ultra scale integration cell.

  • PDF

Correlation between the concentration of TeO2 and the radiation shielding properties in the TeO2-MoO3-V2O5 glass system

  • Y. Al-Hadeethi ;M.I. Sayyed
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1218-1224
    • /
    • 2023
  • We investigated the radiation shielding competence for TeO2-V2O5-MoO3 glasses. The Phy-X software was used to report the radiation shielding parameters for the present glasses. With an increase in TeO2 and MoO3 content, the samples' linear attenuation coefficient improves. However, at low energies, this change is more apparent. At low energy, the present samples have an effective atomic number (Zeff) that is relatively high (in order of 16.17-24.48 at 0.347 MeV). In addition, the findings demonstrated that the density of the samples is a very critical factor in determining the half value layer (HVL). The minimal HVL for each sample can be found at 0.347 MeV and corresponds to 1.776, 1.519, 1.391, 1.210 and 1.167 cm for Te1 to Te5 respectively. However, the highest HVL of these glasses is recorded at 1.33 MeV, which corresponds to 3.773, 3.365, 3.218, 2.925 and 2.908 cm respectively. The tenth value layer results indicate that the thickness of the specimens needs to be increased in order to shield the photons that have a greater energy. Also, the TVL results demonstrated that the sample with the greatest TeO2 and MoO3 concentration has a higher capacity to attenuate photons.

Band-Gap Energy and Thermoelectric Properties of 90% $Bi_2Te_3-10% Bi_2Se_3$ Single Crystals (90% $Bi_2Te_3-10% Bi_2Se_3$ 단결정의 밴드갭 에너지와 열전특성)

  • Ha, Heon-Pil;Hyeon, Do-Bin;Hwang, Jong-Seung;O, Tae-Seong
    • Korean Journal of Materials Research
    • /
    • v.9 no.4
    • /
    • pp.349-354
    • /
    • 1999
  • The temperature dependences of the Hall coefficient, carrier mobility, electrical resistivity, Seebeck coefficient, thermal conductivity, and figure-of-merit of the undoped and $CdI_2$-doped 90% $Bi_2Te_3-10% Bi_2Se_3$, single crystals, grown by the Bridgman method, have been characterized at temperatures ranging from 77K to 600K. The saturated carrier concentration and degenerate temperature of the undoped 90% $Bi_2Te_3-10% Bi_2Se_3$ single crystal are $5.85\times10_{18}cm^{-3}$ and 127K, respectively. The scattering parameter of the 90% $Bi_2Te_3-10% Bi_2Se_3$ single crystal is determined to b -0.23, and the electron mobility to hole mobility ratio ($\mu_e/\mu_h)$ is 1.45. The bandgap energy at 0K of the 90% <$Bi_2Te_3-10% Bi_2Se_3$ single crystal is 0.200 eV. Adding $CdI_2$as a donor dopant, a maximum figure-of-merit of $3.2\times10^{-3}/K$$CdI_2$-doped specimen.

  • PDF