• 제목/요약/키워드: TCE contaminated groundwater

검색결과 58건 처리시간 0.028초

다성분 반응 이동 모델링을 이용한 트리클로로에틸렌(TCE)으로 오염된 지하수에서의 자연저감 평가 (Assessment of Natural Attenuation Processes in the Groundwater Contaminated with Trichloroethylene (TCE) Using Multi-Species Reactive Transport Modeling)

  • 진성욱;전성천;김락현;황현태
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제21권6호
    • /
    • pp.101-113
    • /
    • 2016
  • To properly manage and remediate groundwater contaminated with chlorinated hydrocarbons such as trichloroethylene (TCE), it is necessary to assess natural attenuation processes of contaminants in the aquifer along with investigation of contamination history and aquifer characterization. This study evaluated natural attenuation processes of TCE at an industrial site in Korea by delineating hydrogeochemical characteristics along the flow path of contaminated groundwater, by calculating reaction rate constants for TCE and its degradation products, and by using geochemical and reactive transport modeling. The monitoring data showed that TCE tended to be transformed to cis-1,2-dichloroethene (cis-1,2-DCE) and further to vinyl chloride (VC) via microbial reductive dechlorination, although the degree was not too significant. According to our modeling results, the temporal and spatial distribution of the TCE plume suggested the dominant role of biodegradation in attenuation processes. This study can provide a useful method for assessing natural attenuation processes in the aquifer contaminated with chlorinated hydrocarbons and can be applied to other sites with similar hydrological, microbiological, and geochemical settings.

Field Experiments Using In Situ Bioremediation to Treat Trichloroethylene (TCE)-Contaminated Groundwater

  • Goltz, Mark N.;Gandhi, Rahul K.;Gorelick, Steven M.;Hopkins, Gary D.;McCarty, Perry L.
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2001년도 총회 및 춘계학술발표회
    • /
    • pp.261-266
    • /
    • 2001
  • Three innovative technologies to remediate trichloroethylene (TCE) in situ were (or currently are being) evaluated at a TCE-contaminated groundwater site at Edwards Air Force Base (AFB), California. The three technologies all make use of groundwater recirculation to obviate the need to pump contaminated groundwater to the surface fer treatment. The first technology, which implements aerobic cometabolic bioremediation to destroy TCE in situ, successfully reduced dissolved TCE concentrations from above 1 mg/L to 20-30 $\mu\textrm{g}$/L. The second technology, in-well vapor stripping (IWVS), is capable of treating dissolved TCE at concentrations in the tens to hundreds of mg/L. Finally, the third technology, bioenhanced in-well vapor stripping (BEHIVS): is a combination of the first two technologies, and is designed to reduce very high levels of TCE (tens to hundreds of mg/L) to concentrations that meet regulatory requirements 5 $\mu\textrm{g}$/L). Results of field evaluations of tile first two technologies are presented, and the design of the BEHIVS system. as well as model predictions of BEHIVS performance and the current status of the technology field evaluation. is discussed.

  • PDF

Trichloroethylene으로 오염된 지하수 제거공정의 미생물 다양성 및 분리균주 Pseudomonas sp. DHC8의 특성 (Microbial Diversity of the Trichloroethylene Contaminated Groundwater Treatment System and Characterization of Pseudomonas sp. DHC8)

  • 남지현;신지혜;권기욱;배우근;이동훈
    • 미생물학회지
    • /
    • 제49권4호
    • /
    • pp.336-342
    • /
    • 2013
  • 산업에서 널리 사용되고 있는 Trichloroethylene (TCE)은 토양 및 지하수의 오염을 일으키며, 암 유발물질로 환경에서 반드시 제거해야 하는 물질이다. 본 연구에서는 미생물 고정화 담체를 이용한 TCE로 오염된 지하수 처리 시스템의 세균 군집구조를 조사하고, 우점종을 분리 및 동정하고 TCE 제거특성을 확인하였다. TCE로 오염된 지하수 처리공정의 세균군집을 16S rRNA 유전자 라이브러리의 염기서열 분석방법을 이용하여 조사한 결과, 주요 개체군은 BTEX 분해세균으로 알려진 Pseudomonas 속이었으며 Pseudomonas putida 그룹이 가장 우점하였다. Pseudomonas putida 그룹의 우점은 높은 toluene과 TCE의 농도에서 기인한 것으로 생각된다. TCE로 오염을 제거하기 위한 미생물 반응기에서 toluene과 TCE 분해 세균을 분리 배양하였으며 Pseudomonas sp. DHC8로 명명하였다. 형태학적 특징, 생리 생화학적 특징, 16S rRNA 유전자 염기서열분석 결과 DHC8 균주는 P. putida 그룹에 속하는 것으로 확인되었다. Pseudomonas sp. DHC8을 이용하여 TCE (0.83 mg/L)와 toluene (60.61 mg/L)에 대해 분해실험을 실시하였을 때 12.5시간 동안 TCE는 72.3%, toluene은 100.0% 제거되었다. 또한, TCE와 toluene의 제거속도는 각각 0.02 ${\mu}mol/g$-DCW/h와 2.89 ${\mu}mol/g$-DCW/h였다. 본 연구 결과는 TCE의 생물정화를 위한 반응기의 최대 효율을 유지하기 위한 노력에 도움이 될 것이다.

PCE, TCE로 오염된 지하수내 미생물 특성 및 분포

  • 권수열;김진욱;박후원;이진우;김영
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2004년도 총회 및 춘계학술발표회
    • /
    • pp.158-161
    • /
    • 2004
  • Chlorinated aliphatic hydrocarbons (CAHs) especially perchlorethylene (PCE) and trichlooethylene (TCE) are common groundwater contaminants in Korea. PCE and TCE were often reductively dechiorinated in an aquifer. Several isolates dechlorinate PCE to TCE or cis-1,2 dichloroethylene (c-DCE) were obtained from contaminated and pristine sites in USA and Europe. However in Korea, no information on indigenous microorganism being involved in reductive dechlorination of PCE and TCE is available and different dechlorinating microorganisms might be reside in Korea, since geochemical, and hydrogeological conditions are different, compared to those in the other sites. So we evaluate that: 1) if reductive dechlorinating microorganisms are present in PCE-contaminated site in Korea, 2) if so, what kinds of microorganisms are present; 3) to what extent PCE is reductively dechlorinated. As a results in some PCE-contaminated aquifers in Korea other dechlorinating microorganisms but Dehalococcoides ethenogenes may be responsible for PCE dechlorination. More detailed molecular works are required to evaluate that different dechlorinating microorganisms would reside in Korea.

  • PDF

TCE제거를 위한 반응층과 고정화층의 결합 실험

  • 조현희;박재우
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2002년도 추계학술발표회
    • /
    • pp.67-70
    • /
    • 2002
  • Remediation of groundwater contaminated with chlorinated organics, nitro aromatics, and heavy metals using zero valent iron (ZVI) filings has paid considerable attention in recent years. When the contaminants of high concentration leaked abundantly in subsurface environment, permeable reactive barrier technology using iron filing is taken a long time for the remediation of contaminated groundwater, The problem of contaminant shock is able to be solved using surfactant (hexadecyltrimethylammonium, HDTMA) modified bentonite (SMB) as immobilizing material. Therefore, the purpose of this research was to develop the combined remediation technology using conventional permeable reactive and immobilizing barrier for the enhanced decontamination of chlorinated compounds. Four column experiments were conducted to assess the performance of the mixed reactive materials with Ottawa sand, iron filing, and HDTMA-bentonite for trichloroethylene (TCE) removal under controlled groundwater flow conditions. TCE reduction rates with sand/iron filing/HDTMA-bentonite were highest among four column due to dechlorination of TCE by iron filing and sorption of TCE by SMB.

  • PDF

TCE 오염 지하수의 정화를 위한 나노영가철 기반 반응존 공법의 현장 적용성 연구 (Field Study on Application of Reactive Zone Technology Using Zero-Valent Iron Nanoparticles for Remediation of TCE-Contaminated Groundwater)

  • 안준영;김철용;황경엽;전성천;황인성
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제19권6호
    • /
    • pp.80-90
    • /
    • 2014
  • The laboratory and field studies were conducted to identify an optimal injection concentration of nanoscale zero-valent iron particles (NZVI) and to evaluate the applicability of NZVI-based reactive zone technology to the site contaminated with trichloroethylene (TCE) DNAPL (Dense Non-Aqueous Phase Liquid). The laboratory test found an optimal injection concentration of NZVI of 5 g/L that could remove more than 95% of 0.15 mM TCE within 20 days. Eleven test wells were installed at the aquifer that was mainly composed of alluvial and weathered soils at a strong oxic condition with dissolved oxygen concentration of 3.50 mg/L and oxidation-reduction potential of 301 mV. NZVI of total 30 kg were successfully injected using a centrifugal pump. After 60 days from the NZVI injection, 86.2% of the TCE initially present in the groundwater was removed and the mass of TCE removed was 405 g. Nonchlorinated products such as ethane and ethene were detected in the groundwater samples. Based on the increased chloride ion concentration at the site, the mass of TCE removed was estimated to be 1.52 kg. This implied the presence of DNAPL TCE which contributed to a higher estimate of TCE removal than that based on the TCE concentration change.

Development and Fabrication of Heating and Water Sparging Remediation System (HWSRS) for DNAPL-contaminated Groundwater Treatment

  • Lee, Ju-Won;Park, Won-Seok;Gong, Hyo-Young;Lee, Ae-Ri;Kim, Da-Eun;Baek, Seung-Chon;Lee, Jong-Yeol
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제18권6호
    • /
    • pp.32-37
    • /
    • 2013
  • The scope of this study was to develop, design, and build an ex-situ remediation system of using the heating and water sparging treatment for the highly volatile DNAPL (Dense Non-Aqueous Phase Liquid) contaminated groundwater, and to conduct pilot testing at the site contaminated with DNAPL. The TCE (Trichloroethylene) removal was at the highest rate of 94.6% with the water sparging at $70^{\circ}C$ in the lab-scale test. The pilot-scale remediation system was developed, designed, and fabricated based on the results of the lab-scale test conducted. During the pilot-scale testing, DNAPL-contaminated groundwater was detained at heat exchanger for the certain period of time for pre-heating through the heat exchanger using the thermal energy supplied from the heater. The heating system supplies thermal energy to the preheated DNAPL-contaminated groundwater directly and its highly volatile TCE, $CCl_4$ (Carbontetrachloride), Chloroform are vaporized, and its vaporized and treated water is return edback to the heat exchanger. In the pilot testing the optimum condition of the HWSRS was when the water temperature at the $40^{\circ}C$ and operated with water sparging concurrently, and its TCE removal rate was 90%. The efficiency of the optimized HWSRS has been confirmed through the long-term performance evaluation process.

투수성 반응벽에 의한 오염지하수 복원효과 분석 (Clean-up of Contaminated Groundwater by Permeable Reactive Barrier)

  • 정하익;김상근
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 봄 학술발표회 논문집
    • /
    • pp.542-547
    • /
    • 2000
  • It has become interested in the concept of permeable barriers for the containment and/or destruction of contaminated groundwater. The purpose of these trench-like barriers is to provide in situ capture and possibly destruction of the contaminant while preserving groundwater flow to uncontaminated zones. For instance, a trichloreethylene(TCE) plume may be contained by a permeable in which reactive iron reduces TCE to ethylene and ethane, compounds which can be easily biodegraded. The objective of this research is to examine the feasibility of using zero-valent iron as a clean-up media in permeable reactive barrier system. A series of laboratory column tests are performed. The concentration of influent and effluent water and the rate of clean up are analysed from these test results. The experimental result shows that the majority of the contamination in groundwater is removed in the reactor. And it shows the corresponding increase in the concentration of chloride ions through the reactor. Results from this study indicate that permeable reactive barrier containing admixtures of zero-valent iron and other materials can effectively clean up groundwater contaminated with organic compounds.

  • PDF

오염 지하수 양수 및 처리 공정에 대한 전과정평가 (Life Cycle Assessment on Pump and Treatment Remediation of Contaminated Groundwater)

  • 조종수
    • 대한환경공학회지
    • /
    • 제33권6호
    • /
    • pp.405-412
    • /
    • 2011
  • 국내 TCE에 의해 오염된 산업 공단내의 지하수 정화 방법으로 양수 및 처리(pump and treatment) 공법이 제안되었다. TCE 농도 0.6 mg/L 오염 지하수를 30년 동안 이 공법에 의해 처리하여 0.005 mg/L 이하 농도로 방류할 경우 그 과정에서 발생하는 환경 비용과 환경 편익을 전과정평가에 의해 산출하였으며 그에 따른 환경 영향 및 환경 효과를 분석하였다. 방류 지하수의 총량은 $2.96{\times}10^7m^3$이며 제거된 TCE의 총량은 최대 17.6 kg이었다. 환경 비용은 에너지의 소비, 자원의 소비, 대기, 수질 및 고형 폐기물 형태의 오염 물질의 배출량 등으로 산출되었으며 환경 편익은 정화된 지하수의 사용으로 얻어졌다. 환경 비용에 따른 환경 영향은 30년 동안 구동하는 pump에 의한 전력 사용, 발전을 위해 소모되는 석유, 석탄 등의 원자재의 소모, 방출되는 지구 온난화 및 산성 가스, 부영양화, 폐기물의 발생을 포함하며 토양/지하수 정화 공정 전과정평가 모델의 사용으로 정량화하고 전세계 일인당 소모 또는 배출하는 표준량으로 나누어 표준화하여 비교한 결과 산성비 원인 오염물 배출이 가장 심각하였다.

Remediation of TCE contaminated groundwater by pretreated granular activated carbon

  • Heo Joong-Hyeok;Lee Ju-Young;Lee Dal-Heui;Chang Ho-Wan
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2005년도 총회 및 춘계학술발표회
    • /
    • pp.375-378
    • /
    • 2005
  • The objective of this study was to clarify the possibility of adsorption trichloroethylene (TCE) of pretreated granular activated carbon (GAC). The chemical solution used for the acidic treatment was phosphoric acid. In addition, the effect of ultrasound on GAC assessed in this experiments. It was observed that the adsorption of TCE were different based on pH value of pretreated GAC. However, natural water such as groundwater has various factors like ionic strength and hardness etc. Therefore, more laboratory work is needed to study about pretreated GAC.

  • PDF