References
- Arp, D.J., Yeager, C.M., and Hyman, M.R. 2001. Molecular and cellular fundamentals of aerobic cometabolism of trichloroethylene. Biodegradation 12, 81-103. https://doi.org/10.1023/A:1012089908518
- Bordel, S., Diaz, L.F., Munoz, R., and Villaverde, S. 2007. New insights on toluene biodegradation by Pseudomonas putida F1: influence of pollutant concentration and excreted metabolites. Appl. Microbiol. Biotechnol. 74, 857-866. https://doi.org/10.1007/s00253-006-0724-8
- Chambon, J.C., Bjerg, P.L., Scheutz, C., Baelum, J., Jakobsen, R., and Binning, P.J. 2013. Review of reactive kinetic models describing reductive dechlorination of chlorinated ethenes in soil and groundwater. Biotechnol. Bioeng. 110, 1-23. https://doi.org/10.1002/bit.24714
- Chen, Y., Lin, T., Huang, C., Lin, J., and Hsieh, F. 2007. Degradation of phenol and TCE using suspended and chitosan-bead immobilized Pseudomonas putida. J. Hazard. Mater. 148, 660-670. https://doi.org/10.1016/j.jhazmat.2007.03.030
- Choi, M.H., Kim, J., and Lee, S.S. 2008. The characteristics of tetrachloroethylene (PCE) degradation by Pseudomonas putida BJ10. Kor. J. Microbiol. 44, 311-316.
- Chun, J., Huq, A., and Colwell, R.R. 1999. Analysis of 16S-23S rRNA intergenic spacer regions of Vibrio cholerae and Vibrio mimicus. Appl. Environ. Microbiol. 65, 2202-2208.
- Elango, V., Kurtz, H.D., and Freedman, D.L. 2011. Aerobic cometabolism of trichloroethene and cis-dichloroethene with benzene and chlorinated benzenes as growth substrates. Chemosphere 84, 247-253. https://doi.org/10.1016/j.chemosphere.2011.04.007
- Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783-791. https://doi.org/10.2307/2408678
- Gennaro, V., Ceppi, M., Crosignani, P., and Montanaro, F. 2008. Reanalysis of updated mortality among vinyl and polyvinyl chloride workers: confirmation of historical evidence and new findings. BMC Public Health 8, 21. https://doi.org/10.1186/1471-2458-8-21
- Heald, S. and Jenkins, R.O. 1994. Trichloroethylene removal and oxidation toxicity mediated by toluene dioxygenase of Pseudomonas putida. Appl. Environ. Microbiol. 60, 4634-4637.
- Jahng, D. and Wood, T.K. 1994. Trichloroethylene and chloroform degradation by a recombinant pseudomonad expressing soluble methane monooxygenase from Methylosinus trichosporium OB3b. Appl. Environ. Microbiol. 60, 2473-2482.
- Jukes, T.H. and Cantor, C.R. 1969. Evolution of protein molecules, pp. 21-132. In Munro, H.N. (ed.), Mammalian Protein Metabolism. Academic Press, New York, N.Y., USA.
- Kalyuzhnaya, M.G., Bowerman, S., Lara, J.C., Lidstrom, M.E., and Chistoserdova, L. 2006. Methylotenera mobilis gen. nov., sp. nov., an obligately methylamine-utilizing bacterium within the family Methylophilaceae. Int. J. Syst. Evol. Microbiol. 56, 2819-2823. https://doi.org/10.1099/ijs.0.64191-0
- Kalyuzhnaya, M.G., Beck, D.A.C., Vorobev, N., Smalley, D.D., Lidstrom, M.E., and Chistoserdova, L. 2012. Novel methylotrophic isolates from lake sediment, description of Methylotenera versatilis sp. nov. and emended description of the genus Methylotenera. Int. J. Syst. Evol. Microbiol. 62, 106-111. https://doi.org/10.1099/ijs.0.029165-0
- Kielhorn, J., Melber, C., Wahnschaffe, U., Aitio, A., and Mangelsdorf, I. 2000.Vinyl chloride: still a cause for concern. Environ. Health Perspect. 108, 579-588. https://doi.org/10.1289/ehp.00108579
- Kim, Y., Arp, D.J., and Semprini, L. 2002. Kinetic and inhibition studies for the aerobic cometabolism of 1,1,1-trichloroethane, 1,1-dichloroethylene, and 1,1-dichloroethane by a butane-grown mixed culture. Biotechnol. Bioeng. 80, 498-508. https://doi.org/10.1002/bit.10397
- Kim, S., Bae, W., Hwang, J., and Park, J. 2010. Aerobic TCE degradation by encapsulated toluene-oxidizing bacteria, Pseudomonas putida and Bacillus spp. Water Sci. Technol. 62, 1991-1997. https://doi.org/10.2166/wst.2010.471
- Kim, Y., Kim, J., Ha, C., Kim, N., Hong, K., Kwon, S.Y., Ahn, Y.H., Ha, J., and Park, H. 2005. Field tests for assessing the bioremediation feasibility of a trichloroethylene-contaminated aquifer. J. KoSSGE. 10, 38-45.
- Lane, D.J. 1991. 16S/23S rRNA sequencing, pp. 115-175. In Stackebrandt, E. and Goodfellow, M. (ed.), Nucleic Acid Techniques in Bacterial Systematics. John Wiley & Sons, Chichester, England.
- Lee, S., Lee, J., and Jahng, D. 1998. Degradation of BTEX and trichloroethylene by Pseudomonas putida F1 and Burkholderia cepacia G4. Kor. J. Biotechnol. Bioeng. 13, 561-568.
- Liu, J., Amemiya, T., Chang, Q., Qian, Y., and Itoh, K. 2012. Toluene dioxygenase expression correlates with trichloroethylene degradation capacity in Pseudomonas putida F1 cultures. Biodegradation 23, 683-691. https://doi.org/10.1007/s10532-012-9544-y
- McCarty, P.L. 1997. Microbiology-breathing with chlorinated solvents. Science 276, 1521-1522. https://doi.org/10.1126/science.276.5318.1521
- Morono, Y., Unno, H., Tanji, Y., and Hori, K. 2004. Addition of aromatic substrates restores trichloroethylene degradation activity in Pseudomonas putida F1. Appl. Environ. Microbiol. 70, 2830-2835. https://doi.org/10.1128/AEM.70.5.2830-2835.2004
- Mulet, M., Garcia-Valdes, E., and Lalucat, J. 2013. Phylogenetic affiliation of Pseudomonas putida biovar A and B strains. Res. Microbiol. 164, 351-359. https://doi.org/10.1016/j.resmic.2013.01.009
- Powell, C.L., Nogaro, G., and Agrawal, A. 2011. Aerobic cometabolic degradation of trichloroethene by methane and ammonia oxidizing microorganisms naturally associated with Carex comosa roots. Biodegradation 22, 527-538. https://doi.org/10.1007/s10532-010-9425-1
- Rittmann, B.E. and McCarty, P.L. 2001. Environmental Biotechnology: Principles and Applications, McGraw-Hill.
- Rochelle, P.A., Fry, J.C., Parkes, R.J., and Weightman, A.J. 1992. DNA extraction for 16S rRNA gene analysis to determine genetic diversity in deep sediment communities. FEMS Microbiol. Lett. 79, 59-65.
- Saitou, N. and Nei, M. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406-425.
- Squillace, P.J., Moran, M.J., Lapham, W.W., Price, C.V., Clawges, R.M., and Zogorski, J.S. 1999. Volatile organic compounds in untreated ambient groundwater of the United States, 1985-1995. Environ. Sci. Technol. 33, 4176-4187. https://doi.org/10.1021/es990234m
- Uchiyama, H., Yagi, O., Oguri, K., and Kokufuta, E. 1994. Immobilization of trichloroethylene-degrading bacterium, Methylocystis sp. strain M in different matrices. J. Ferment. Bioeng. 77, 173-177. https://doi.org/10.1016/0922-338X(94)90319-0
- Wackett, L.P. and Gibson, D.T. 1988. Degradation of trichloroethylene by toluene dioxygenase in whole-cell studies with Pseudomonas putida F1. Appl. Environ. Microbiol. 54, 1703-1708.
- World Health Organization. 1984. Guidelines for drinking water quality WHO. Geneva.
- Yeager, C.M., Arthur, K.M., Bottomley, P.J., and Arp, D.J. 2004. Trichloroethylene degradation by toluene-oxidizing bacteria grown on non-aromatic substrates. Biodegradation 15, 19-28. https://doi.org/10.1023/B:BIOD.0000009947.09125.35
- Yeager, C.M., Bottomley, P.J., and Arp, D.J. 2001. Cytotoxicity associated with trichloroethylene oxidation in Burkholderia cepacia G4. Appl. Environ. Microbiol. 67, 2107-2115. https://doi.org/10.1128/AEM.67.5.2107-2115.2001
- Zylstra, G.J. and Gibson, D.T. 1989. Toluene degradation by Pseudomonas putida F1. J. Biological. Chem. 264, 1940-1946.