DOI QR코드

DOI QR Code

Microbial Diversity of the Trichloroethylene Contaminated Groundwater Treatment System and Characterization of Pseudomonas sp. DHC8

Trichloroethylene으로 오염된 지하수 제거공정의 미생물 다양성 및 분리균주 Pseudomonas sp. DHC8의 특성

  • Nam, Ji-Hyun (Department of Biology, Kyungsung University) ;
  • Shin, Ji-Hye (Department of Microbiology, Chungbuk National University) ;
  • Kwon, Kiwook (Department of Civil and Environmental System Engineering, Hanyang University) ;
  • Bae, Wookeun (Department of Civil and Environmental System Engineering, Hanyang University) ;
  • Lee, Dong-Hun (Department of Microbiology, Chungbuk National University)
  • 남지현 (경성대학교 생물학과) ;
  • 신지혜 (충북대학교 미생물학과) ;
  • 권기욱 (한양대학교 건설환경플랜트공학과) ;
  • 배우근 (한양대학교 건설환경플랜트공학과) ;
  • 이동훈 (충북대학교 미생물학과)
  • Received : 2013.09.23
  • Accepted : 2013.10.21
  • Published : 2013.12.31

Abstract

Trichloroethylene (TCE) is a widely used substance in commercial and industrial applications, yet it must be removed from the contaminated soil and groundwater environment due to its toxic and carcinogenic nature. We investigated bacterial community structure, dominant bacterial strain, and removal efficiency in a TCE contaminated groundwater treatment system using immobilized carrier. The microbial diversity was determined by the nucleotide sequences of 16S rRNA gene library. The major bacterial population of the contaminated groundwater treatment system was belonging to BTEX degradation bacteria. The bacterial community consisted mainly of one genus of Pseudomonas (Pseudomonas putida group). The domination of Pseudomonas putida group may be caused by high concentration of toluene and TCE. Furthermore, we isolated a toluene and TCE degrading bacterium, named Pseudomonas sp. DHC8, from the immobilized carrier in bioreactor which was designed to remove TCE from the contaminated ground water. Based on the results of morphological and physiological characteristics, and 16S rRNA gene sequence analysis, strain DHC8 was identified as a member of Pseudomonas putida group. When TCE (0.83 mg/L) and toluene (60.61 mg/L) were degraded by this strain, removal efficiencies were 72.3% and 100% for 12.5 h, respectively. Toluene removal rate was 2.89 ${\mu}mol/g$-DCW/h and TCE removal rate was 0.02 ${\mu}mol/g$-DCW/h. These findings will be helpful for maintaining maximum TCE removal efficiency of a reactor for bioremediation of TCE.

산업에서 널리 사용되고 있는 Trichloroethylene (TCE)은 토양 및 지하수의 오염을 일으키며, 암 유발물질로 환경에서 반드시 제거해야 하는 물질이다. 본 연구에서는 미생물 고정화 담체를 이용한 TCE로 오염된 지하수 처리 시스템의 세균 군집구조를 조사하고, 우점종을 분리 및 동정하고 TCE 제거특성을 확인하였다. TCE로 오염된 지하수 처리공정의 세균군집을 16S rRNA 유전자 라이브러리의 염기서열 분석방법을 이용하여 조사한 결과, 주요 개체군은 BTEX 분해세균으로 알려진 Pseudomonas 속이었으며 Pseudomonas putida 그룹이 가장 우점하였다. Pseudomonas putida 그룹의 우점은 높은 toluene과 TCE의 농도에서 기인한 것으로 생각된다. TCE로 오염을 제거하기 위한 미생물 반응기에서 toluene과 TCE 분해 세균을 분리 배양하였으며 Pseudomonas sp. DHC8로 명명하였다. 형태학적 특징, 생리 생화학적 특징, 16S rRNA 유전자 염기서열분석 결과 DHC8 균주는 P. putida 그룹에 속하는 것으로 확인되었다. Pseudomonas sp. DHC8을 이용하여 TCE (0.83 mg/L)와 toluene (60.61 mg/L)에 대해 분해실험을 실시하였을 때 12.5시간 동안 TCE는 72.3%, toluene은 100.0% 제거되었다. 또한, TCE와 toluene의 제거속도는 각각 0.02 ${\mu}mol/g$-DCW/h와 2.89 ${\mu}mol/g$-DCW/h였다. 본 연구 결과는 TCE의 생물정화를 위한 반응기의 최대 효율을 유지하기 위한 노력에 도움이 될 것이다.

Keywords

References

  1. Arp, D.J., Yeager, C.M., and Hyman, M.R. 2001. Molecular and cellular fundamentals of aerobic cometabolism of trichloroethylene. Biodegradation 12, 81-103. https://doi.org/10.1023/A:1012089908518
  2. Bordel, S., Diaz, L.F., Munoz, R., and Villaverde, S. 2007. New insights on toluene biodegradation by Pseudomonas putida F1: influence of pollutant concentration and excreted metabolites. Appl. Microbiol. Biotechnol. 74, 857-866. https://doi.org/10.1007/s00253-006-0724-8
  3. Chambon, J.C., Bjerg, P.L., Scheutz, C., Baelum, J., Jakobsen, R., and Binning, P.J. 2013. Review of reactive kinetic models describing reductive dechlorination of chlorinated ethenes in soil and groundwater. Biotechnol. Bioeng. 110, 1-23. https://doi.org/10.1002/bit.24714
  4. Chen, Y., Lin, T., Huang, C., Lin, J., and Hsieh, F. 2007. Degradation of phenol and TCE using suspended and chitosan-bead immobilized Pseudomonas putida. J. Hazard. Mater. 148, 660-670. https://doi.org/10.1016/j.jhazmat.2007.03.030
  5. Choi, M.H., Kim, J., and Lee, S.S. 2008. The characteristics of tetrachloroethylene (PCE) degradation by Pseudomonas putida BJ10. Kor. J. Microbiol. 44, 311-316.
  6. Chun, J., Huq, A., and Colwell, R.R. 1999. Analysis of 16S-23S rRNA intergenic spacer regions of Vibrio cholerae and Vibrio mimicus. Appl. Environ. Microbiol. 65, 2202-2208.
  7. Elango, V., Kurtz, H.D., and Freedman, D.L. 2011. Aerobic cometabolism of trichloroethene and cis-dichloroethene with benzene and chlorinated benzenes as growth substrates. Chemosphere 84, 247-253. https://doi.org/10.1016/j.chemosphere.2011.04.007
  8. Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783-791. https://doi.org/10.2307/2408678
  9. Gennaro, V., Ceppi, M., Crosignani, P., and Montanaro, F. 2008. Reanalysis of updated mortality among vinyl and polyvinyl chloride workers: confirmation of historical evidence and new findings. BMC Public Health 8, 21. https://doi.org/10.1186/1471-2458-8-21
  10. Heald, S. and Jenkins, R.O. 1994. Trichloroethylene removal and oxidation toxicity mediated by toluene dioxygenase of Pseudomonas putida. Appl. Environ. Microbiol. 60, 4634-4637.
  11. Jahng, D. and Wood, T.K. 1994. Trichloroethylene and chloroform degradation by a recombinant pseudomonad expressing soluble methane monooxygenase from Methylosinus trichosporium OB3b. Appl. Environ. Microbiol. 60, 2473-2482.
  12. Jukes, T.H. and Cantor, C.R. 1969. Evolution of protein molecules, pp. 21-132. In Munro, H.N. (ed.), Mammalian Protein Metabolism. Academic Press, New York, N.Y., USA.
  13. Kalyuzhnaya, M.G., Bowerman, S., Lara, J.C., Lidstrom, M.E., and Chistoserdova, L. 2006. Methylotenera mobilis gen. nov., sp. nov., an obligately methylamine-utilizing bacterium within the family Methylophilaceae. Int. J. Syst. Evol. Microbiol. 56, 2819-2823. https://doi.org/10.1099/ijs.0.64191-0
  14. Kalyuzhnaya, M.G., Beck, D.A.C., Vorobev, N., Smalley, D.D., Lidstrom, M.E., and Chistoserdova, L. 2012. Novel methylotrophic isolates from lake sediment, description of Methylotenera versatilis sp. nov. and emended description of the genus Methylotenera. Int. J. Syst. Evol. Microbiol. 62, 106-111. https://doi.org/10.1099/ijs.0.029165-0
  15. Kielhorn, J., Melber, C., Wahnschaffe, U., Aitio, A., and Mangelsdorf, I. 2000.Vinyl chloride: still a cause for concern. Environ. Health Perspect. 108, 579-588. https://doi.org/10.1289/ehp.00108579
  16. Kim, Y., Arp, D.J., and Semprini, L. 2002. Kinetic and inhibition studies for the aerobic cometabolism of 1,1,1-trichloroethane, 1,1-dichloroethylene, and 1,1-dichloroethane by a butane-grown mixed culture. Biotechnol. Bioeng. 80, 498-508. https://doi.org/10.1002/bit.10397
  17. Kim, S., Bae, W., Hwang, J., and Park, J. 2010. Aerobic TCE degradation by encapsulated toluene-oxidizing bacteria, Pseudomonas putida and Bacillus spp. Water Sci. Technol. 62, 1991-1997. https://doi.org/10.2166/wst.2010.471
  18. Kim, Y., Kim, J., Ha, C., Kim, N., Hong, K., Kwon, S.Y., Ahn, Y.H., Ha, J., and Park, H. 2005. Field tests for assessing the bioremediation feasibility of a trichloroethylene-contaminated aquifer. J. KoSSGE. 10, 38-45.
  19. Lane, D.J. 1991. 16S/23S rRNA sequencing, pp. 115-175. In Stackebrandt, E. and Goodfellow, M. (ed.), Nucleic Acid Techniques in Bacterial Systematics. John Wiley & Sons, Chichester, England.
  20. Lee, S., Lee, J., and Jahng, D. 1998. Degradation of BTEX and trichloroethylene by Pseudomonas putida F1 and Burkholderia cepacia G4. Kor. J. Biotechnol. Bioeng. 13, 561-568.
  21. Liu, J., Amemiya, T., Chang, Q., Qian, Y., and Itoh, K. 2012. Toluene dioxygenase expression correlates with trichloroethylene degradation capacity in Pseudomonas putida F1 cultures. Biodegradation 23, 683-691. https://doi.org/10.1007/s10532-012-9544-y
  22. McCarty, P.L. 1997. Microbiology-breathing with chlorinated solvents. Science 276, 1521-1522. https://doi.org/10.1126/science.276.5318.1521
  23. Morono, Y., Unno, H., Tanji, Y., and Hori, K. 2004. Addition of aromatic substrates restores trichloroethylene degradation activity in Pseudomonas putida F1. Appl. Environ. Microbiol. 70, 2830-2835. https://doi.org/10.1128/AEM.70.5.2830-2835.2004
  24. Mulet, M., Garcia-Valdes, E., and Lalucat, J. 2013. Phylogenetic affiliation of Pseudomonas putida biovar A and B strains. Res. Microbiol. 164, 351-359. https://doi.org/10.1016/j.resmic.2013.01.009
  25. Powell, C.L., Nogaro, G., and Agrawal, A. 2011. Aerobic cometabolic degradation of trichloroethene by methane and ammonia oxidizing microorganisms naturally associated with Carex comosa roots. Biodegradation 22, 527-538. https://doi.org/10.1007/s10532-010-9425-1
  26. Rittmann, B.E. and McCarty, P.L. 2001. Environmental Biotechnology: Principles and Applications, McGraw-Hill.
  27. Rochelle, P.A., Fry, J.C., Parkes, R.J., and Weightman, A.J. 1992. DNA extraction for 16S rRNA gene analysis to determine genetic diversity in deep sediment communities. FEMS Microbiol. Lett. 79, 59-65.
  28. Saitou, N. and Nei, M. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406-425.
  29. Squillace, P.J., Moran, M.J., Lapham, W.W., Price, C.V., Clawges, R.M., and Zogorski, J.S. 1999. Volatile organic compounds in untreated ambient groundwater of the United States, 1985-1995. Environ. Sci. Technol. 33, 4176-4187. https://doi.org/10.1021/es990234m
  30. Uchiyama, H., Yagi, O., Oguri, K., and Kokufuta, E. 1994. Immobilization of trichloroethylene-degrading bacterium, Methylocystis sp. strain M in different matrices. J. Ferment. Bioeng. 77, 173-177. https://doi.org/10.1016/0922-338X(94)90319-0
  31. Wackett, L.P. and Gibson, D.T. 1988. Degradation of trichloroethylene by toluene dioxygenase in whole-cell studies with Pseudomonas putida F1. Appl. Environ. Microbiol. 54, 1703-1708.
  32. World Health Organization. 1984. Guidelines for drinking water quality WHO. Geneva.
  33. Yeager, C.M., Arthur, K.M., Bottomley, P.J., and Arp, D.J. 2004. Trichloroethylene degradation by toluene-oxidizing bacteria grown on non-aromatic substrates. Biodegradation 15, 19-28. https://doi.org/10.1023/B:BIOD.0000009947.09125.35
  34. Yeager, C.M., Bottomley, P.J., and Arp, D.J. 2001. Cytotoxicity associated with trichloroethylene oxidation in Burkholderia cepacia G4. Appl. Environ. Microbiol. 67, 2107-2115. https://doi.org/10.1128/AEM.67.5.2107-2115.2001
  35. Zylstra, G.J. and Gibson, D.T. 1989. Toluene degradation by Pseudomonas putida F1. J. Biological. Chem. 264, 1940-1946.