• Title/Summary/Keyword: TAZ

Search Result 55, Processing Time 0.031 seconds

Effects of the Hippo Signaling Pathway in Human Gastric Cancer

  • Zhou, Guang-Xi;Li, Xiao-Yu;Zhang, Qi;Zhao, Kun;Zhang, Cui-Ping;Xue, Chang-Hu;Yang, Kun;Tian, Zi-Bin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.9
    • /
    • pp.5199-5205
    • /
    • 2013
  • Background/Aim: The Hippo signaling pathway is a newly discovered and conserved signaling cascade, which regulates organ size control by governing cell proliferation and apoptosis. This study aimed to investigate its effects in human gastric cancer. Methods: Tumor tissues (n=60), adjacent non-tumor tissues (n=60) and normal tissues (n=60) were obtained from the same patients with primary gastric cancer (GC). In addition, 70 samples of chronic atrophic gastritis (CAG) tissues were obtained from patients with intestinal metaplasia (IM) by endoscopic biopsy. Hippo signaling molecules, including Mst1, Lats1, YAP1, TAZ, TEAD1, Oct4 and CDX2, were determined by quantitative polymerase chain reaction (qPCR). Protein expression of Mst1, Lats1, YAP1, TEAD1 and CDX2 was assessed by immunohistochemistry and Western blotting. Results: Mst1, Lats1 and Oct4 mRNA expression showed an increasing tendency from GC tissues to normal gastric tissues, while the mRNA expression of YAP1, TAZ and TEAD1 was up-regulated (all P<0.01). Mst1 and Lats1 protein expression presented a similar trend with their mRNA expression. In addition, YAP1 and TEAD1 protein expression in GC was significantly higher than in the other groups (all P<0.01). CDX2 mRNA and protein expression in the CAG group were higher than in the other groups (all P<0.01). In GC, mRNA expression of Mst1, Lats1, Oct4, YAP1, TAZ, TEAD1 and CDX2 had a close correlation with lymphatic metastasis and tumor TNM stage (all P<0.01). Furthermore, protein expression of Mst1, Lats1, YAP1, TAZ, TEAD1 and CDX2 had a close correlation between each other (P<0.05). Conclusion: The Hippo signaling pathway is involved in the development, progression and metastasis of human gastric cancer. Therefore, manipulation of Hippo signaling molecules may be a potential therapeutic strategy for gastric cancer.

Highly Efficient Phosphorescent White Organic Light-Emitting Devices with a Poly(N-vinylcarbazole) Host Layer

  • Kang, Min-Ki;Moon, Dae-Gyu
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.2
    • /
    • pp.80-83
    • /
    • 2011
  • We have fabricated phosphorescent white organic light-emitting devices (WOLEDs) with a spin-coated poly(Nvinylcarbazole) [PVK] host layer. Iridium(III) bis[(4,6-difluorophenyl)-pyridinato-N,$C^{2'}$]picolinate (FIrpic), tris(2-phenylpyridine)iridium(III) [$Ir(ppy)_3$], and tris(2-phenyl-1-quinoline)iridium(III) [$Ir(phq)_3$], were used as the blue, green, and red guest materials, respectively. The PVK was mixed with FIrpic, $Ir(ppy)_3$, and $Ir(phq)_3$ molecules in a chlorobenzene solution and spin-coated in order to prepare the emission layer; 3-(4-biphenylyl)-4-phenyl-5-(4-tertbutylphenyl)-1,2,4-triazole (TAZ) was used as an electron transport material. The resultant device structure was ITO/PVK:FIrpic:$Ir(ppy)_3:Ir(phq)_3$/TAZ/LiF/Al. The electroluminescence, efficiency, and electrical conduction characteristics of the WOLEDs based on the doped PVK host layer were investigated. The maximum current efficiency of the three wavelength WOLED with the doped PVK host was 19.2 cd/A.

Regulation of the Hippo signaling pathway by ubiquitin modification

  • Kim, Youngeun;Jho, Eek-hoon
    • BMB Reports
    • /
    • v.51 no.3
    • /
    • pp.143-150
    • /
    • 2018
  • The Hippo signaling pathway plays an essential role in adult tissue homeostasis and organ size control. Abnormal regulation of Hippo signaling can be a cause for multiple types of human cancers. Since the awareness of the importance of the Hippo signaling in a wide range of biological fields has been continually grown, it is also understood that a thorough and well-rounded comprehension of the precise dynamics could provide fundamental insights for therapeutic applications. Several components in the Hippo signaling pathway are known to be targeted for proteasomal degradation via ubiquitination by E3 ligases. ${\beta}-TrCP$ is a well-known E3 ligase of YAP/TAZ, which leads to the reduction of YAP/TAZ levels. The Hippo signaling pathway can also be inhibited by the E3 ligases (such as ITCH) which target LATS1/2 for degradation. Regulation via ubiquitination involves not only complex network of E3 ligases but also deubiquitinating enzymes (DUBs), which remove ubiquitin from its targets. Interestingly, non-degradative ubiquitin modifications are also known to play important roles in the regulation of Hippo signaling. Although there has been much advanced progress in the investigation of ubiquitin modifications acting as regulators of the Hippo signaling pathway, research done to date still remains inadequate due to the sheer complexity and diversity of the subject. Herein, we review and discuss recent developments that implicate ubiquitin-mediated regulatory mechanisms at multiple steps of the Hippo signaling pathway.

Root Bark of Morus Alba Suppresses the YAP Activity through Activation of Classical Hippo Signaling Pathway (상근피의 Hippo 신호전달 경로 활성화를 통한 YAP 억제 효능)

  • Cho, You Na;Choi, Da Bin;Jeong, Han Sol
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.33 no.4
    • /
    • pp.191-197
    • /
    • 2019
  • This study aims to evaluate the effects of the root bark of Morus alba (RMA) on the regulation of the Hippo-YAP pathway. Hippo-YAP signaling is a critical regulator in controlling organ size and tissue homeostasis. Hippo, the serine/threonine kinase phosphorylate the LATS. Phosphorylated LATS then phosphorylates and inactivates the YAP and TAZ, which are two closely related transcriptional co-activator. Here we report RMA activates the Hippo signaling, thereby inhibits the YAP/TAZ activity. First, we examine the cytotoxic effects of RMA by MTT assay. RMA was cytotoxic at concentrations higher than $50{\mu}g/ml$ in HEK293A cells. The reporter gene assay was performed to measure the activity of TEAD, a key transcription factor that controls cell growth and proliferation. RMA significantly suppressed the luciferase activity. By phos-taq gel shift assay, and western blotting, we showed that RMA enhanced the phosphorylation of YAP in wild type cells, but not in LATS1/2 knock out cells, which means RMA activates classical Hippo pathway. RMA induced the cytoplasmic sequestration of YAP. RMA also suppressed the mRNA expression of CTGF and CYR61; the two major YAP dependent genes. Taken together, RMA is considered to be a good candidate for proliferative disease such as cancer, by facilitating cell death through activating the Hippo signaling pathway.

Hippo Signal Transduction Mechanisms in T Cell Immunity

  • Antoine Bouchard;Mariko Witalis;Jinsam Chang;Vincent Panneton;Joanna Li;Yasser Bouklouch;Woong-Kyung Suh
    • IMMUNE NETWORK
    • /
    • v.20 no.5
    • /
    • pp.36.1-36.13
    • /
    • 2020
  • Hippo signaling pathways are evolutionarily conserved signal transduction mechanisms mainly involved in organ size control, tissue regeneration, and tumor suppression. However, in mammals, the primary role of Hippo signaling seems to be regulation of immunity. As such, humans with null mutations in STK4 (mammalian homologue of Drosophila Hippo; also known as MST1) suffer from recurrent infections and autoimmune symptoms. Although dysregulated T cell homeostasis and functions have been identified in MST1-deficient human patients and mouse models, detailed cellular and molecular bases of the immune dysfunction remain to be elucidated. Although the canonical Hippo signaling pathway involves transcriptional co-activator Yes-associated protein (YAP) or transcriptional coactivator with PDZ motif (TAZ), the major Hippo downstream signaling pathways in T cells are YAP/TAZ-independent and they widely differ between T cell subsets. Here we will review Hippo signaling mechanisms in T cell immunity and describe their implications for immune defects found in MST1-deficient patients and animals. Further, we propose that mutual inhibition of Mst and Akt kinases and their opposing roles on the stability and function of forkhead box O and β-catenin may explain various immune defects discovered in mutant mice lacking Hippo signaling components. Understanding these diverse Hippo signaling pathways and their interplay with other evolutionarily-conserved signaling components in T cells may uncover molecular targets relevant to vaccination, autoimmune diseases, and cancer immunotherapies.

New phosphorescent host material: Tetrameric Zinc(II) Cluster

  • Lee, Hyung-Sup;Jeon, Ae-Kyong;Lee, Kyu- Wang;Lee, Sung-Joo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.903-906
    • /
    • 2003
  • Doping a small amount of a phosphorescent dye into an organic light-emitting diodes(OLED) can lead to a significant improvement in the device properties. The fluorescent host materials like TAZ, CBP have been used, but have a problem of rapid decay of efficiency at high current densities. To alleviate this problem, phosphorescent host was introduced. The whole configuration of OELD fabricated was ITO/a-NPD(50nm)/Zn $cluster:Ir(ppy)_{3}(30nm)/BCP{(10nm)/Alq_{3}(20nm)$ /Al:Li. The OLED showed high luminance (> 50,000 $cd/m^{2}$ ) and external efficiency(5.7%). At higher current densities, rapid decay of external quantum efficiency or host emission, which was frequently observed in the fluorescent host system, were not observed.

  • PDF

Emission Characteristics of Polymer Blue Organic Light Emitting Devices on the Plastic Substrates (플라스틱 기판을 이용한 고분자 청색 유기발광다이오드의 발광 특성)

  • Jung, Jae-Hoon;Moon, Dae-Gyu
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.9
    • /
    • pp.682-685
    • /
    • 2013
  • We have fabricated blue phosphorescent organic light-emitting devices (OLEDs) on a plastic substrate. The solution coated poly (9-vinylcarbazole) (PVK) host doped with Bis (3,5-difluoro-2-(2-pyridyl)phenyl_(2-carboxypyridyl)irdium(III) (FIrPic) guest molecules was used as an hole transporting emission layer. The device structure was ITO/PVK:FIrpic (50 nm, xwt%)/TAZ 50 nm)/LiF (0.5 nm)/Al (100 nm). The concentration of FIrpic molecule was varied from 1 wt% to 10 wt%. The OLED on plastic substrate exhibited maximum current efficiency of 18 cd/A with 5 wt% FIrpic molecules were doped into the PVK layer.

Effects of Zoning Structure on Travel Demand Forecasts (존 체계 구축이 교통수요 추정에 미치는 영향에 관한 연구)

  • Han, Myeong-Ju;Seong, Hong-Mo;Baek, Seung-Han;Im, Yong-Taek;Lee, Yeong-In
    • Journal of Korean Society of Transportation
    • /
    • v.29 no.1
    • /
    • pp.17-27
    • /
    • 2011
  • This paper investigates some critical errors influencing travel demand estimation in Korea Transportation Data Base (KTDB), and through this investigation reasonable traffic analysis zone (TAZ) size and internal trips ratio are analyzed. With varying zone size, the accuracy of travel demand estimation is studied and appropriate level of zone size in KTDB is also presented. For this purpose zonal structure consisting of location of zone centroid, number of centroid connecters has been constructed by social economic index, and then some descriptive statistical analyses such as F-test, coefficient of correlation are performed. From the results, this paper shows that the optimum levels of zone system were various according to the order and capacity of roads, and also shows that the smaller TAZ, the less error in this research. In conclusion, in order to improve accuracy of traffic demand estimation it is necessary to make zone size smaller.

Pro-tumorigenic roles of TGF-β signaling during the early stages of liver tumorigenesis through upregulation of Snail

  • Moon, Hyuk;Han, Kwang-Hyub;Ro, Simon Weonsang
    • BMB Reports
    • /
    • v.50 no.12
    • /
    • pp.599-600
    • /
    • 2017
  • Many studies have focused on the tumor suppressive role of $TGF-{\beta}$ signaling during the early stages of tumorigenesis by activating the target genes involved in cytostasis and apoptosis. We investigated the effects of $TGF-{\beta}$ inhibition on early tumorigenesis in the liver, by employing diverse inhibitory methods. Strikingly, $TGF-{\beta}$ inhibition consistently suppressed hepatic tumorigenesis that was induced either by activated RAS plus p53 downregulation or by the co-activation of RAS and TAZ signaling; this demonstrates the requirements for canonical $TGF-{\beta}$ signaling in tumorigenesis. Moreover, we found that Snail is the target gene of the $TGF-{\beta}$ signaling pathway that promotes hepatic carcinogenesis. The knockdown of Snail suppressed the early tumorigenesis in the liver, as did the $TGF-{\beta}$ inhibition, while the ectopic expression of Snail restored tumorigenesis that was suppressed by the $TGF-{\beta}$ inhibition. Our findings establish the oncogenic $TGF-{\beta}$-Smad-Snail signaling axis during the early tumorigenesis in the liver.