Objective: To evaluate the performance of baseline clinical characteristics and pretherapeutic histogram parameters derived from T2 mapping of the extraocular muscles (EOMs) in the prediction of treatment response to intravenous glucocorticoid (IVGC) therapy for active and moderate-to-severe thyroid-associated ophthalmopathy (TAO) and to investigate the effect of fat-suppression (FS) in T2 mapping in this prediction. Materials and Methods: A total of 79 patients clinically diagnosed with active, moderate-to-severe TAO (47 female, 32 male; mean age ± standard deviation, 46.1 ± 10 years), including 43 patients with a total of 86 orbits in the responsive group and 36 patients with a total of 72 orbits in the unresponsive group, were enrolled. Baseline clinical characteristics and pretherapeutic histogram parameters derived from T2 mapping with FS (i.e., FS T2 mapping) or without FS (i.e., conventional T2 mapping) of EOMs were compared between the two groups. Independent predictors of treatment response to IVGC were identified using multivariable analysis. Receiver operating characteristic (ROC) curve analysis was performed to evaluate the predictive performance of the prediction models. Differences between the models were examined using the DeLong test. Results: Compared to the unresponsive group, the responsive group had a shorter disease duration, lower kurtosis (FS-kurtosis), lower standard deviation, larger 75th, 90th, and 95th (FS-95th) T2 relaxation times in FS mapping and lower kurtosis in conventional T2 mapping. Multivariable analysis revealed that disease duration, FS-95th percentile, and FS-kurtosis were independent predictors of treatment response. The combined model, integrating all identified predictors, had an optimized area under the ROC curve of 0.797, 88.4% sensitivity, and 62.5% specificity, which were significantly superior to those of the imaging model (p = 0.013). Conclusion: An integrated combination of disease duration, FS-95th percentile, and FS-kurtosis was a potential predictor of treatment response to IVGC in patients with active and moderate-to-severe TAO. FS T2 mapping was superior to conventional T2 mapping in terms of prediction.
Let C be a nonempty closed convex subset of real Hilbert space H and F = $\{S(t):t{\geq}0\}$ a nonexpansive self-mapping semigroup of C, and $f:C{\rightarrow}C$ is a fixed contractive mapping. Consider the process {$x_n$} : $$\{{x_{n+1}={\beta}_nx_n+(1-{\beta}_n)z_n\\z_n={\alpha}_nf(x_n)+(1-{\alpha}_n)S(t_n)P_C(x_n-r_nAx_n)$$. It is shown that {$x_n$} converges strongly to a common element of the set of fixed points of nonexpansive semigroups and the set of solutions of the variational inequality for an inverse strongly-monotone mapping which solves some variational inequality.
We construct an iteration scheme involving a hybrid pair of mappings, one a single-valued asymptotically nonexpansive mapping t and the other a multivalued nonexpansive mapping T, in a complete CAT(0) space. In the process, we remove a restricted condition (called the end-point condition) from results of Akkasriworn and Sokhuma [1] and and use this to prove some convergence theorems. The results concur with analogues for Banach spaces from Uddin et al. [16].
Let E be a uniformly convex Banach space with a uniformly $G{\hat{a}}teaux$ differentiable norm, C a nonempty closed convex subset of E, and $T:C{\rightarrow}{\mathcal{K}}(E)$ a multivalued nonself-mapping such that $P_T$ is nonexpansive, where $P_T(x)=\{u_x{\in}Tx:{\parallel}x-u_x{\parallel}=d(x,Tx)\}$. For $f:C{\rightarrow}C$ a contraction and $t{\in}(0,1)$, let $x_t$ be a fixed point of a contraction $S_t:C{\rightarrow}{\mathcal{K}}(E)$, defined by $S_tx:=tP_T(x)+(1-t)f(x)$, $x{\in}C$. It is proved that if C is a nonexpansive retract of E and $\{x_t\}$ is bounded, then the strong ${\lim}_{t{\rightarrow}1}x_t$ exists and belongs to the fixed point set of T. Moreover, we study the strong convergence of $\{x_t\}$ with the weak inwardness condition on T in a reflexive Banach space with a uniformly $G{\hat{a}}teaux$ differentiable norm. Our results provide a partial answer to Jung's question.
Let C be a nonempty closed convex subset of a real Hilbert space H. Consider the following iterative algorithm given by $x_0\;{\in}\;C$ arbitrarily chosen, $x_{n+1}\;=\;{\alpha}_n{\gamma}f(W_nx_n)+{\beta}_nx_n+((1-{\beta}_n)I-{\alpha}_nA)W_nP_C(I-s_nB)x_n$, ${\forall}_n\;{\geq}\;0$, where $\gamma$ > 0, B : C $\rightarrow$ H is a $\beta$-inverse-strongly monotone mapping, f is a contraction of H into itself with a coefficient $\alpha$ (0 < $\alpha$ < 1), $P_C$ is a projection of H onto C, A is a strongly positive linear bounded operator on H and $W_n$ is the W-mapping generated by a finite family of nonexpansive mappings $T_1$, $T_2$, ${\ldots}$, $T_N$ and {$\lambda_{n,1}$}, {$\lambda_{n,2}$}, ${\ldots}$, {$\lambda_{n,N}$}. Nonexpansivity of each $T_i$ ensures the nonexpansivity of $W_n$. We prove that the sequence {$x_n$} generated by the above iterative algorithm converges strongly to a common fixed point $q\;{\in}\;F$ := $\bigcap^N_{i=1}F(T_i)\;\bigcap\;VI(C,\;B)$ which solves the variational inequality $\langle({\gamma}f\;-\;A)q,\;p\;-\;q{\rangle}\;{\leq}\;0$ for all $p\;{\in}\;F$. Using this result, we consider the problem of finding a common fixed point of a finite family of nonexpansive mappings and a strictly pseudocontractive mapping and the problem of finding a common element of the set of common fixed points of a finite family of nonexpansive mappings and the set of zeros of an inverse-strongly monotone mapping. The results obtained in this paper extend and improve the several recent results in this area.
We discuss recent advances in Gd-based $T_1$-weighted MR contrast agents for the mapping of cellular pH. The pH plays a critical role in various biological processes. During the past two decades, several MR contrast agents of strategic importance for pH-mapping have been developed. Some of these agents shed light on the pH fluctuation in the tumor microenvironment. A pH-responsive self-assembled contrast agent facilitates the visualization of tumor size as small as $3mm^3$. Optimization of various parameters is crucial for the development of pH-responsive contrast agents. In due course, the new contrast agents may provide significant insight into pH fluctuations in the human body.
Let E be a uniformly convex Banach space with a uniformly G$\hat{a}teaux differentiable norm, C a nonempty closed convex subset of $E, T : C \to E$ a nonexpansive mapping, and Q a sunny nonexpansive retraction of E onto C. For $u \in C$ and $t \in (0,1)$, let $x_t$ be a unique fixed point of a contraction $R_t : C \to C$, defined by $R_tx = Q(tTx + (1-t)u), x \in C$. It is proved that if ${x_t}$ is bounded, then the strong $lim_{t\to1}x_t$ exists and belongs to the fixed point set of T. Furthermore, the strong convergence of ${x_t}$ in a reflexive and strictly convex Banach space with a uniformly G$\hat{a}$teaux differentiable norm is also given in case that the fixed point set of T is nonempty.
Journal of the Korean Society of Industry Convergence
/
v.24
no.1
/
pp.69-77
/
2021
The widely used low-cost design methodology for IoT devices is very popular. In such a networked device, memory is composed of flash memory, SRAM, DRAM, etc., and because it processes a large amount of data, memory design is an important factor for system performance. Therefore, each device selects optimized design factors such as function, performance and cost according to market demand. The design of a memory architecture available for low-cost IoT devices is very limited with the configuration of SRAM, flash memory, and DRAM. In order to process as much data as possible in the same space, an architecture that supports parallel processing units is usually provided. Such parallel architecture is a design method that provides high performance at low cost. However, it needs precise software techniques for instruction and data mapping on the parallel architecture. This paper proposes an instruction/data mapping method to support optimized parallel processing performance. The proposed method optimizes system performance by actively using hardware and software parallelism.
In this paper, we first show that the iteration {$x_n$} defined by $x_{n+1}=P((1-{\alpha}_n)x_n +{\alpha}_nTP[{\beta}_nTx_n+(1-{\beta}_n)x_n])$ converges strongly to some fixed point of T when E is a real uniformly convex Banach space and T is a quasi-nonexpansive non-self mapping satisfying Condition A, which generalizes the result due to Shahzad [11]. Next, we show the strong convergence of the Mann iteration process with errors when E is a real uniformly convex Banach space and T is a quasi-nonexpansive self-mapping satisfying Condition A, which generalizes the result due to Senter-Dotson [10]. Finally, we show that the iteration {$x_n$} defined by $x_{n+1}={\alpha}_nSx_n+{\beta}_nT[{\alpha}^{\prime}_nSx_n+{\beta}^{\prime}_nTx_n+{\gamma}^{\prime}_n{\upsilon}_n]+{\gamma}_nu_n$ converges strongly to a common fixed point of T and S when E is a real uniformly convex Banach space and T, S are two quasi-nonexpansive self-mappings satisfying Condition D, which generalizes the result due to Ghosh-Debnath [3].
Objective: To evaluate the feasibility of texture analysis on non-contrast-enhanced T1 maps of cardiac magnetic resonance (CMR) imaging for the diagnosis of myocardial injury in acute myocardial infarction (MI). Materials and Methods: This study included 68 patients (57 males and 11 females; mean age, 55.7 ± 10.5 years) with acute ST-segment-elevation MI who had undergone 3T CMR after a percutaneous coronary intervention. Forty patients of them also underwent a 6-month follow-up CMR. The CMR protocol included T2-weighted imaging, T1 mapping, rest first-pass perfusion, and late gadolinium enhancement. Radiomics features were extracted from the T1 maps using open-source software. Radiomics signatures were constructed with the selected strongest features to evaluate the myocardial injury severity and predict the recovery of left ventricular (LV) longitudinal systolic myocardial contractility. Results: A total of 1088 segments of the acute CMR images were analyzed; 103 (9.5%) segments showed microvascular obstruction (MVO), and 557 (51.2%) segments showed MI. A total of 640 segments were included in the 6-month follow-up analysis, of which 160 (25.0%) segments showed favorable recovery of LV longitudinal systolic myocardial contractility. Combined radiomics signature and T1 values resulted in a higher diagnostic performance for MVO compared to T1 values alone (area under the curve [AUC] in the training set; 0.88, 0.72, p = 0.031: AUC in the test set; 0.86, 0.71, p = 0.002). Combined radiomics signature and T1 values also provided a higher predictive value for LV longitudinal systolic myocardial contractility recovery compared to T1 values (AUC in the training set; 0.76, 0.55, p < 0.001: AUC in the test set; 0.77, 0.60, p < 0.001). Conclusion: The combination of radiomics of non-contrast-enhanced T1 mapping and T1 values could provide higher diagnostic accuracy for MVO. Radiomics also provides incremental value in the prediction of LV longitudinal systolic myocardial contractility at six months.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.