• 제목/요약/키워드: T-norm

검색결과 302건 처리시간 0.031초

ON A CLASS OF GENERALIZED TRIANGULAR NORMS

  • Jebril, Iqbal;Raissouli, Mustapha
    • 대한수학회논문집
    • /
    • 제32권2호
    • /
    • pp.353-359
    • /
    • 2017
  • Starting from a t-norm T, it is possible to construct a class of new t-norms, so-called T-generalized t-norm. The purpose of this paper is to describe some properties of this class of generalized t-norms. An algebraic structure as well as a binary relation among t-norms are also investigated. Some open problems are discussed as well.

T-sum of bell-shaped fuzzy intervals

  • 홍덕헌
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 한국데이터정보과학회 2006년도 추계 학술발표회 논문집
    • /
    • pp.81-95
    • /
    • 2006
  • The usual arithmetic operations on real numbers can be extended to arithmetical operations on fuzzy intervals by means of Zadeh's extension principle based on a t-norm T. A t-norm is called consistent with respect to a class of fuzzy intervals for some arithmetic operation if this arithmetic operation is closed for this class. It is important to know which t-norms are consistent with a particular type of fuzzy intervals. Recently Dombi and Gyorbiro proved that addition is closed if the Dombi t-norm is used with two bell-shaped fuzzy intervals. A result proved by Mesiar on a strict t-norm based shape preserving additions of LR-fuzzy intervals with unbounded support is recalled. As applications, we define a broader class of bell-shaped fuzzy intervals. Then we study t-norms which are consistent with these particular types of fuzzy intervals. Dombi and Gyorbiro's results are special cases of the results described in this paper.

  • PDF

SHAPE PRESERVING ADDITIONS OF LR-FUZZY INTERVALS WITH UNBOUNDED SUPPORT

  • Hong, Dug-Hun
    • Journal of applied mathematics & informatics
    • /
    • 제27권5_6호
    • /
    • pp.1049-1059
    • /
    • 2009
  • Continuous t-norm based shape preserving additions of LR-fuzzy intervals with unbounded support is studied. The case for bounded support, which was a conjecture suggested by Mesiar in 1997, was proved by the author in 2002 and 2008. In this paper, we give a necessary and sufficient conditions for a continuous t-norm T that induces DR-shape preserving addition of LR-fuzzy intervals with unbounded support. Some of the results can be deduced from the results given in the paper of Mesiar in 1997. But, we give direct proofs of the results.

  • PDF

A REMARK ON SOME INEQUALITIES FOR THE SCHATTEN p-NORM

  • HEDAYATIAN, K.;BAHMANI, F.
    • 호남수학학술지
    • /
    • 제24권1호
    • /
    • pp.9-23
    • /
    • 2002
  • For a closed densely defined linear operator T on a Hilbert space H, let ${\prod}$ denote the function which corresponds to T, the orthogonal projection from $H{\oplus}H$ onto the graph of T. We extend some ordinary norm ineqralites comparing ${\parallel}{\Pi}(A)-{\Pi}(B){\parallel}$ and ${\parallel}A-B{\parallel}$ to the Schatten p-norm where A and B are bounded operators on H.

  • PDF

A note on T-sum of bell-shaped fuzzy intervals

  • Hong, Dug-Hun
    • 한국지능시스템학회논문지
    • /
    • 제17권6호
    • /
    • pp.804-806
    • /
    • 2007
  • The usual arithmetic operations on real numbers can be extended to arithmetical operations on fuzzy intervals by means of Zadeh's extension principle based on a t-norm T. Dombi and Gyorbiro proved that addition is closed if the Dombi t-norm is used with two bell-shaped fuzzy intervals. Recently, Hong [Fuzzy Sets and Systems 158(2007) 739-746] defined a broader class of bell-shaped fuzzy intervals. Then he study t-norms which are consistent with these particular types of fuzzy intervals as applications of a result proved by Mesiar on a strict f-norm based shape preserving additions of LR-fuzzy intervals with unbounded support. In this note, we give a direct proof of the main results of Hong.

Fuzzy Linear Regression with the Weakest t-norm

  • Lee, Sung-Ho;Kim, Kyung-Moo
    • Journal of the Korean Data and Information Science Society
    • /
    • 제9권2호
    • /
    • pp.105-111
    • /
    • 1998
  • In this paper a fuzzy regression model based on the weakest t-norm is introduced. The model shows a regression model which has fuzzy coefficients and fuzzy variables.

  • PDF

Distributivity of fuzzy numbers under t-norm based fuzzy arithmetic operations

  • Hong, Dug-Hun
    • Journal of the Korean Data and Information Science Society
    • /
    • 제14권1호
    • /
    • pp.93-101
    • /
    • 2003
  • Computation with fuzzy numbers is a prospective branch of a fuzzy set theory regarding the data processing applications. In this paper we consider an open problem about distributivity of fuzzy quantities based on the extension principle suggested by Mare (1997). Indeed, we show that the distributivity on the class of fuzzy numbers holds and min-norm is the only continuous t-norm which holds the distributivity under t-norm based fuzzy arithmetic operations.

  • PDF

LINEAR MAPS PRESERVING 𝓐𝓝-OPERATORS

  • Golla, Ramesh;Osaka, Hiroyuki
    • 대한수학회보
    • /
    • 제57권4호
    • /
    • pp.831-838
    • /
    • 2020
  • Let H be a complex Hilbert space and T : H → H be a bounded linear operator. Then T is said to be norm attaining if there exists a unit vector x0 ∈ H such that ║Tx0║ = ║T║. If for any closed subspace M of H, the restriction T|M : M → H of T to M is norm attaining, then T is called an absolutely norm attaining operator or 𝓐𝓝-operator. In this note, we discuss linear maps on B(H), which preserve the class of absolutely norm attaining operators on H.

휴양환경 이용수준에 대한 방문객의 적응 및 대응행동 - 북한산 국립공원 소귀천 탐방로를 대상으로 - (Visitor Adjustment and Coping Behavior for Use Level in a Recreational Setting - A Case Study of Bukhansan National park -)

  • 허학영;안동만
    • 한국조경학회지
    • /
    • 제30권6호
    • /
    • pp.38-46
    • /
    • 2003
  • Perceived crowding is known as a necessary method to evaluate social carrying capacity in recreational settings. But according to the results of previous research, perceived crowding, use density, and satisfaction have shown weak and indirect correlations. The theory of visitors’ adjustment is one of several possible explanations for this poor relation. But the validity of the visitors’ adjustment theory has not been not inspected clearly. Therefore, the purposes of this study are to understand visitors’ adjustment theory and to examine visitors’ adjustment to the overuse of recreational settings. Study hypotheses were formulated through literature review and related to visitors’ adjustment in recreation density. Pour hypotheses were established and inspected with the case study, i.e., Rationalization : Visitors’ satisfaction isn't related to use density in recreation setting, 2) Product-shift : Preference norm is related to current use density, 3) Self-selection : Visitors’ satisfaction for the use level is generally high, and 4) Displacement : Norm interference is related to willingness to revisit. The case study was conducted during May and June,2001. According to the results of this survey, visitors adjust to overuse of recreation setting through rationalization and product shift (hypotheses l/2 acceptance). Current use density isn't related to visitors’ satisfaction and willingness to revisit (see table 3). And visitors’ preference norm is modified by situation (see table 4). Visitors’ satisfaction and willingness to revisit don't show a high correlation but moderately high (see table 5, hypothesis 3 acceptance). Differences between visitors’ preference norm and current use density is norm interference. Norm interference isn't related to willingness to revisit (see table 7). Therefore, the norm interference concept is not a useful method to explain visitors’ adjustment to the degree of overuse in a recreational setting (hypothesis 4 rejection). As for future directions, the following are proposed: 1) correctly understanding and reestablishing the visitor norm and norm interference concept, 2) introducing a composite research method to monitor visitors’ behavior and survey visitors’ attitudes and coping responses. These efforts would be helpful in the Planning and management of recreational settings to improve the quality of visitors’ experiences.