Abstract
The usual arithmetic operations on real numbers can be extended to arithmetical operations on fuzzy intervals by means of Zadeh's extension principle based on a t-norm T. Dombi and Gyorbiro proved that addition is closed if the Dombi t-norm is used with two bell-shaped fuzzy intervals. Recently, Hong [Fuzzy Sets and Systems 158(2007) 739-746] defined a broader class of bell-shaped fuzzy intervals. Then he study t-norms which are consistent with these particular types of fuzzy intervals as applications of a result proved by Mesiar on a strict f-norm based shape preserving additions of LR-fuzzy intervals with unbounded support. In this note, we give a direct proof of the main results of Hong.