• Title/Summary/Keyword: T-Stiffener

Search Result 45, Processing Time 0.02 seconds

Behavior of CFT Column to H-Beam Full-Scale Connections with External T-Stiffeners (T-스티프너 보강 CFT 기둥 - H형강보 실대형 접합부의 거동)

  • Kim, Young Ju;Kang, Chang Hoon;Shin, Kyung Jae;Oh, Young Suk;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.6
    • /
    • pp.715-723
    • /
    • 2001
  • This paper represents the behavior of CFT column to H-beam full-scale connection with external T-stiffener. 6 specimens whose T-stiffeners which are compounded of vertical element and horizontal element were made under the parameter of the strength ratio of each elements(vertical element and horizontal element in T-stiffener) to the beam full plastic moment. The analysis-parameters demonstrated in the base of the data that we get in experiment are strength stiffness, and plastic rotational capacity. All of specimen showed stable hysteretic behavior, and the horizontal element is more critical than vertical element in strength and stiffness. The mean beam plastic rotation of all specimen except the TS-2 specimen is 2.97% rad.

  • PDF

Strength Prediction and Optimum Design of Internally Ring-Stiffened Tubular X-and T-Joints (내부 환보강 X형 및 T형 관이음부의 강도산정과 최적설계)

  • Cho, Hyun-Man;Ryu, Yeon-Sun;Lee, Hyun-Jin
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.315-320
    • /
    • 2007
  • An effective reinforcement method for steel tubular joints having a large chord diameter is the use of internal ring stiffeners. This paper presents the results of a numerical study on the static strength of internally ring-stiffened tubular X- and T-joints subjected to brace axial compression loading. Nonlinear finite element analyses are used to compute the joint strength. The influence of geometrical parameters has been studied and the maximum reinforcement effect of a ring stiffener has been evaluated. A strength ratio is defined. by the ratio of ring-stiffened joint strength to unstiffened joint strength, and an equation for this strength ratio is derived by regression analysis. Design optimization for ring stiffener of tubular joints is carried out using metropolis genetic algorithm.

  • PDF

Optimum arrangement of stiffener on the buckling behaviour of stiffened composite panels with reinforced elliptical cutouts subjected to non-uniform edge load

  • Kalgutkar, Akshay Prakash;Banerjee, Sauvik;Rajanna, T.
    • Steel and Composite Structures
    • /
    • v.42 no.4
    • /
    • pp.427-446
    • /
    • 2022
  • Cutouts in the beams or plates are often unavoidable due to inspection, maintenance, ventilation, structural aesthetics purpose, and sometimes to lighten the structures. Therefore, there will be a substantial reduction in the strength of the structure due to the introduction of the cutouts. However, these cutouts can be reinforced with the different patterns of ribs (stiffener) to enhance the strength of the structure. The present study highlights the influence of the elliptical cutout reinforced with a different pattern of ribs on the stability performance of such stiffened composite panels subjected to non-uniform edge loads by employing the Finite element (FE) technique. In the present formulation, a 9-noded heterosis element is used to model the skin, and a 3-noded isoparametric beam element is used to simulate the rib that is attached around a cutout in different patterns. The displacement compatibility condition is employed between the plate and stiffener, and arbitrary orientations are taken care by introducing respective transformation matrices. The effect of shear deformation and rotary inertia are incorporated in the formulation. A new mesh configuration is developed to house the attached ribs around an elliptical cutout with different patterns. Initially, a study is performed on the panels with different stiffener schemes for various ply orientations and for different stiffener depth to width ratios (ds/bs) to determine an optimal stiffener configuration. Further, various parametric studies are conducted on an obtained optimal stiffened panel to understand the effect of cutout size, cutout orientation, panel aspect ratio, and boundary conditions. Finally, from the analysis, it can be observed that the arrangement of the stiffener attached to a panel has a major impact on the buckling capacity of the stiffened panel. The stiffener's depth to width ratio also significantly influences the buckling characteristic.

Behavior of Concrete-Filled Tube Column to H-Beam Connections with External Stiffeners and Reinforcing Bar (외부스티프너와 철근으로 보강한 CFT 기둥-H형강 보 접합부의 거동)

  • Kang, Chang-Hoon;Shin, Kyung-Jae;Oh, Young-Suk;Moon, Tae-Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.1 s.44
    • /
    • pp.55-63
    • /
    • 2000
  • This paper is a study on the behavior of Concrete-Filled Square Tubular(CFST) column to H-beam connections reinforced with external stiffeners and reinforcing bar. The cyclic loading tests of 5 test specimens were carried out. The main Parameters are as follows; 1)the length of the stiffener: 200mm, 250mm, 2)the diameter of reinforcing bar: HD16, 19. The results of the researches demonstrate that the increase of the stiffener length was more effective than the increase of the area of reinforcing bar in the point of both strength and stiffness. By reinforcing external stiffeners, stable hysteretic behavior was shown and plastic hinge was formed on the beam flange. Cold-formed tube sections should be used carefully to avoid the welding fracture at the round corners of section, and the proposed welding methods are suitable for this connections.

  • PDF

Tensile Behavior Analyses of Tubular Column to H-Beam Connections with T-Stiffeners (외부 T 스티프너를 이용한 각형강관기둥-H 형강보 접합부의 인장거동 해석)

  • Shin, Kyung Jae;Kwon, Young Ran
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.1
    • /
    • pp.69-78
    • /
    • 2002
  • This paper describes the analysis results for tensile behavior of tubular column to H-beam connection with T stiffeners. Using the elasto-plastic finite element method, analysis results are compare with experimental results. Parametric analyses with different size of T-stiffener have conducted to understand the stress distribution at the connections. Stress concentration in elastic region and PEEQ distribution in plastic region are plotted for different shape. The results of analysis were applied to design equations and were checked for the applicability of design equations.

Study for Structural Behavior of O. T. Bulkhead Due to Discontinued Vertical Stiffeners in COT (COT에서의 Vertical Stiffener 단락에 따른 O. T. Bulkhead 구조 거동에 대한 고찰)

  • Lee, Dae-Sung;Kim, Jung-Hee;Chung, Sang-Youl
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2011.09a
    • /
    • pp.21-24
    • /
    • 2011
  • Oil Tight Bulkhead (O. T. Bulkhead) is one of the most important structural members of oil tankers in the views of vessel's strength and safety. Therefore O.T. bulkhead's strength should be sufficient against relevant loadings, which is normally verified by local scantling requirement and structural strength analysis defined in CSR (Common Structure Rules for Double Hull Oil Tankers). However, there is a weak-able situation when the vertical stiffeners are cut due to the penetration of cargo pipes through O. T. Bulkhead. In addition, CSR does not define how to prove the strength of this case. Therefore it is necessary to verify the structural adequacy in case that several vertical stiffeners are discontinued. This article intends to prove the strength of O. T. Bulkhead with five (5) vertical stiffeners discontinued due to pipes' penetration using the grillage analysis and the finite element analysis and to provide proper reinforcement.

  • PDF

Tensile Behavior of CFT Column-to-H beam Connections with External T-shaped Stiffeners (T-스티프너 보강 콘크리트충전 각형강관 기둥-H형강 보 접합부의 인장거동)

  • Kang, Chang Hoon;Shin, Kyung Jae;Oh, Young Suk;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.1
    • /
    • pp.121-130
    • /
    • 2002
  • This paper presents the tensile behavior of a Concrete-Filled Square Steel Tubular (CFT) column to H-beam welded connections. These connections were externally reinforced with T-shaped stiffeners at the junction of CFT column and beam. The tensile loading tests of eighteen tee-joint connections and finite element analysis using ANSYS were carried out. The main parameters of tests are as follows: 1) the thickness of Square Steel Tubular Column : 6 mm, 9 mm, 2) the strength ratios of tensile strength of horizontal stiffeners to tensile strength of beam flange : 70 %, 100 %, 150 %, 3) the strength ratios of shear strength of vertical stiffeners to tensile strength of beam flange : 80 %, 115 %, 160 %. The results of the tests demonstrate that overall behavior and failure modes of all the specimens are governed mainly by the horizontal stiffeners rather than the vertical stiffeners, and the vertical stiffener played only a role in transferring load introduced from beam to column.

Geometrically Nonlinear Analysis of Eccentrically Stiffened Plate (편심 보강평판의 기하학적 비선형 해석)

  • Jae-Wook Lee;Kie-Tae Chung;Young-Tae Yang
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.2
    • /
    • pp.307-317
    • /
    • 1991
  • A displacement-based finite element method is presented for the geometrically nonlinear analysis of eccentrically stiffened plates. The nonlinear degenerated shell and eccentric isobeam(isoparametric beam) elements are formulated on the basis of total Lagrangian and updated Lagrangian descriptions. To describe the stiffener's local plate buckling mode, some additional local degrees of freedom are used in the eccentric isobeam element. The eccentric isobeam element can be affectively employed to model the eccentric stiffener just like the case of the degenerated shell element. A detailed nonlinear analysis including the effects of stiffener's eccentricity is performed to estimate the critical load and the post buckling behaviour of an eccentrically stiffened plate. The critical buckling loads are found higher than analytic plate buckling load but lower than Euler buckling load which are the buckling strength requirements of classification society.

  • PDF

A Study on the Stiffened Rectangular Plate under High Velocity Impact (고속발사 충격을 받는 보강사각판의 연구)

  • Woo, Dae-Hyun;Lee, Young-Shin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.350-357
    • /
    • 2012
  • The velocity response of stiffened rectangular plate under high velocity impact was studied. Numerical simulation was conducted on the stiffened plate with four stiffeners under various impact positions. Considered stiffener types were rib, I, hat and T stiffener. For the center impact position of I stiffened plate, the simulated residual velocity was 365.6 m/s with the initial projectile velocity 500 m/s. The reinforcing characteristic of I stiffened plate was excellent among four stiffeners.

Retardation Effect on the Breach of the Earth Filled Embankment Using the Stiffener During Overtopping (흙댐 제체의 보강재 설치에 따른 월류붕괴 지연효과)

  • Joo, Yo Han;Yeo, Chang-Geon;Lee, Seung Oh
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.4
    • /
    • pp.1377-1387
    • /
    • 2013
  • Most embankment of the reservoirs (99.1 %) have been constructed in the earth filled type in Korea because the construction of this type is less expensive and simpler than others such as concrete one. However, it has to be reinforced the slope to prevent the breach due to overtopping or piping under unexpected flood conditions. This study has been analyzed the retardation effect using three types (L, T, $L^*$ shape) of stiffener in order to reinforce embankment when they are collapsed by overtopping flow. Experimental results showed that L-type stiffener is the most effective in delaying the breaching of embankment and reducing the soil erosion when compared with others. The reinforced embankment breaching showed that time delay was occurred about 1.73 to 2.29 times and the peak flowrate was reduced compared to non-stiffener embankments due to energy dissipation by collision and less soil erosion. The embankment breaching mostly leads to major damages because of the lack of repair time. Thus, since these stiffeners can resist the rapid breach, it would be possible to earn the time to emergency repair and lifesaving, as well as reduction of damages of embankment in downward region with decreasing peak flowrate. Results from this study would be used for the basis when establishing the emergency action plan for the reservoirs on the verge of hazard.