• 제목/요약/키워드: T-S fuzzy control

검색결과 219건 처리시간 0.024초

퍼지 기법을 이용한 비선형 시스템의 카오스화 (Chaotification of Nonlinear Systems Via Fuzzy Approach)

  • 김택룡;박진배;주영훈
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2005년도 추계학술대회 학술발표 논문집 제15권 제2호
    • /
    • pp.125-128
    • /
    • 2005
  • This paper presents a simple methodolosy that makes a continuous-time nonlinear system chaotic using fuzzy control. The nonlinear system is represented by the T-S fuzzy model. Then, a fuzzy controller makes the T-S fuzzy model, which could be stable or unstable, bounded and chaotic. The verification of chaos in the closed-loop system is done by the following procedures. We establish an asymptotically approximate relationship between a continuous-time T-S fuzzy system with time-delay and a discrete-time T-S fuzzy system. Then, we verify the chaos in the closed-loop system by applying the Marotto theorem to its associated discrete-time T-S fuzzy system.

  • PDF

T-S Fuzzy Identification을 이용한 유도전동기 구현에 관한 연구 (The study on Induction motor of 'T-S Fuzzy Identification')

  • 이승택;이동광;안호균;박승규;안종건;윤태성;곽군평
    • 한국정보통신학회논문지
    • /
    • 제16권5호
    • /
    • pp.973-981
    • /
    • 2012
  • 본 논문에서는 비선형 시스템에 대하여 Takagi-sugeno(T-S) 퍼지 Identification을 이용하여 유도전동기의 비선형 다변수 시스템을 선형화 할 수 있는 새로운 방법을 제안한다. T-S 퍼지 모델의 선형화는 퍼지 규칙들 및 소속 함수들의 산술적인 계산으로 인해 선형화가 쉽지 않다. 그러므로 T-S 퍼지 Identification을 이용하여 퍼지 규칙 및 소속함수들의 추정을 통해 높은 정확도를 가지는 선형 모델로 제공한다.

비선형(非線型) 시스템의 퍼지 모델링 기법과 안정도(安定度) 해석(解析)에 관한 연구 (Fuzzy Modeling Technique of Nonlinear Dynamical System and Its Stability Analysis)

  • 이준탁;소명옥;이상석;지석준;김태우
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 B
    • /
    • pp.801-803
    • /
    • 1995
  • This paper presents the linearized fuzzy modeling technique of nonlinear dynamical system and the stability analysis of fuzzy control system. Firstly, the nonlinear system is partitionized by multiple linear fuzzy subcontrol systems based on fuzzy linguistic variables and fuzzy rules. Secondly, the disturbance adaptation controllers which guarrantee the global asymptotic stability of each fuzzy subsystem by an optimal feedback control law are designed and the stability analysis procedures of the total fuzzy control system using Lyapunov functions and eigenvalues are discussed in detail through a given illustrative example.

  • PDF

Reliability analysis of nuclear safety-class DCS based on T-S fuzzy fault tree and Bayesian network

  • Xu Zhang;Zhiguang Deng;Yifan Jian;Qichang Huang;Hao Peng;Quan Ma
    • Nuclear Engineering and Technology
    • /
    • 제55권5호
    • /
    • pp.1901-1910
    • /
    • 2023
  • The safety-class (1E) digital control system (DCS) of nuclear power plant characterized structural multiple redundancies, therefore, it is important to quantitatively evaluate the reliability of DCS in different degree of backup loss. In this paper, a reliability evaluation model based on T-S fuzzy fault tree (FT) is proposed for 1E DCS of nuclear power plant, in which the connection relationship between components is described by T-S fuzzy gates. Specifically, an output rejection control system is chosen as an example, based on the T-S fuzzy FT model, the key indicators such as probabilistic importance are calculated, and for a further discussion, the T-S fuzzy FT model is transformed into Bayesian Network(BN) equivalently, and the fault diagnosis based on probabilistic analysis is accomplished. Combined with the analysis of actual objects, the effectiveness of proposed method is proved.

Design of T-S Fuzzy Model based Adaptive Fuzzy Observer and Controller

  • Ahn, Chang-Hwan
    • 조명전기설비학회논문지
    • /
    • 제23권11호
    • /
    • pp.9-21
    • /
    • 2009
  • This paper proposes the alternative observer and controller design scheme based on T-S fuzzy model. Nonlinear systems are represented by fuzzy models since fuzzy logic systems are universal approximators. In order to estimate the unmeasurable states of a given unknown nonlinear system, T-S fuzzy modeling method is applied to get the dynamics of an observation system. T-S fuzzy system uses the linear combination of the input state variables and the modeling applications of them to various kinds of nonlinear systems can be found. The proposed indirect adaptive fuzzy observer based on T-S fuzzy model can cope with not only unknown states but also unknown parameters. The proposed controller is based on a simple output feedback method. Therefore, it solves the singularity problem, without any additional algorithm, which occurs in the inverse dynamics based on the feedback linearization method. The adaptive fuzzy scheme estimates the parameters and the feedback gain comprising the fuzzy model representing the observation system. In the process of deriving adaptive law, the Lyapunov theory and Lipchitz condition are used. To show the performance of the proposed observer and controller, they are applied to an inverted pendulum on a cart.

시간 지연을 가지는 비선형 마르코비안 점프 시스템의 퍼지 제어 (Stabilization for Markovian Jump Nonlinear Systems with Time-Delay via T-S Fuzzy Control)

  • 송민국;박진배;주영훈
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.235-236
    • /
    • 2008
  • This paper is concerned with the stabilization problem of Markovian jump nonlinear systems with time-delay via Takagi-Sugeno (T-S) fuzzy control approach. The T-S fuzzy models are employed to represent nonlinear systems with Markovian jump parameters and time-delay. The purpose of this paper is to design a mode-independent fuzzy controller such that the closed-loop Markovian jump fuzzy system is stochastically stable. Based on a stochstic Lyapunov function, stabilization sufficient conditions using a mode-independent fuzzy controller are derived for the Markovian jump fuzzy system in terms of Linear Matrix Inequalities (LMIs). Finally, a simulation example is presented to illustrate the effectiveness of the proposed method.

  • PDF

고분자 전해질 연료전지 시스템의 퍼지 출력 궤환 제어기 설계: 공통 입력을 갖는 이산시간 비선형 상호결합 시스템 접근 (Fuzzy Output-Feedback Controller Design for PEMFC: Discrete-time Nonlinear Interconnected Systems with Common Inputs Approach)

  • 구근범;박진배;주영훈
    • 제어로봇시스템학회논문지
    • /
    • 제17권9호
    • /
    • pp.851-856
    • /
    • 2011
  • In this paper, the fuzzy output-feedback controller is addressed for a discrete-time nonlinear interconnected systems with common input. The nonlinear interconnected system is represented by a T-S (Takagi-Sugeno) fuzzy model. Based on T-S fuzzy interconnected system, the fuzzy output-feedback controller is designed with common input. The stability condition of the closed-loop system is represented to the LMI (Linear Matrix Inequality) form. PEMFC model is given to show the verification of the controller discussed throughout the paper.

LMI-Based Intelligent Digital Redesign for Multirate Sampled-Data Fuzzy Systems

  • 김도완;주영훈;박진배
    • 한국지능시스템학회논문지
    • /
    • 제16권1호
    • /
    • pp.113-118
    • /
    • 2006
  • This paper presents a new linear-matrix-inequality-based intelligent digital redesign (LMI-based IDR) technique to match the states of the analog and the digital T-S fuzzy control systems at the intersampling instants as well as the sampling ones. The main features of the proposed technique are: 1) the affine control scheme is employed to increase the degree of freedom; 2) the fuzzy-model-based periodic control is employed, and the control input is changed n times during one sampling period; 3) The proposed IDR technique is based on the approximately discretized version of the T-S fuzzy system, but its discretization error vanishes as n approaches the infinity. 4) some sufficient conditions involved in the state matching and the stability of the closed-loop discrete-time system can be formulated in the LMIs format.

T-S 퍼지 외란 관측기를 이용한 IPMSM의 강인 제어 (Robust Control of IPMSM Using T-S Fuzzy Disturbance Observer)

  • 김민찬;이설곤;박승규;곽군평;안호균;윤태성
    • 한국정보통신학회논문지
    • /
    • 제19권4호
    • /
    • pp.973-983
    • /
    • 2015
  • 본 논문에서는 부하외란이 존재하는 경우에 T-S 퍼지모델을 이용한 비선형 외란 관측기를 제안함으로써 IPMSM(Interior Permanent Magnet Motor)의 제어성능 향상을 도모하였다. T-S퍼지모델은 국부선형모델들의 퍼지결합으로 비선형계통을 T-S퍼지모델을 구한 다음, 각 국부선형모델의 역함수에 대한 T-S퍼지모델을 구함으로써 비선형 역함수를 구하는 방법을 제안하였다. 역함수를 이용한 외란관측기의 구성은 선형계통에서와는 달리 비선형 계통에서는 용이하지 않으나 T-S퍼지 모델을 사용함으로써 이 문제를 해결한 것이다. 제안된 비선형 외란관측기는 T-S퍼지제어기의 대표 격인 PDC 제어기와 함께 사용되었고 시뮬레이션을 통해서 그 유용성을 입증하였다.

T-S형 퍼지제어기의 후건부 멤버십함수 동조방법 (The Tuning Method on Consequence Membership Function of T-S Type FLC)

  • 최한수;이경웅
    • 제어로봇시스템학회논문지
    • /
    • 제17권3호
    • /
    • pp.264-268
    • /
    • 2011
  • This paper presents a Takagi-Sugeno (T-S) type Fuzzy Logic Controller (FLC) with only 3 rules. The choice of parameters of FLC is very difficult job on design FLC. Therefore, the choice of appropriate linguistic variable is an important part of the design of fuzzy controller. However, since fuzzy controller is nonlinear, it is difficult to analyze mathematically the affection of the linguistic variable. So this choice is depend on the expert's experience and trial and error method. In this paper, we propose the method to choose the consequence linear equation's parameter of T-S type FLC. The parameters of consequence linear equations of FLC are tuned according to the system error that is the input of FLC. The full equation of T-S type FLC is presented and using this equation, the relation between output and parameters can represented. The parameters are tuned with gradient algorithm. The parameters are changed depending on output. The simulation results demonstrate the usefulness of this T-S type 3 rule fuzzy controller.