• Title/Summary/Keyword: T-S 퍼지

Search Result 222, Processing Time 0.031 seconds

Local Separation Principle of Fuzzy Observer-Controller (퍼지 관측기-제어기의 국소적 독립 원리)

  • Lee, Ho-Jae;Park, Jin-Bae;Joo, Young-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.7
    • /
    • pp.902-906
    • /
    • 2004
  • A separation principle of the Takagj-Sugeno (T-S) fuzzy-model-based observer-control is investigated. When the premise variables are able to be measured or directly computed from the outputs of the T-S fuzzy system and the fuzzy inference rules for the plant, control, and observer share the premise parts, the T-S fuzzy-model-based observer and the T-S fuzzy-model-based control can be separately designed such that the global stabilizability is guaranteed by the fuzzy observer-based output-feedback control. In this case, the global separation principle is well established. On the other hand, when the premise variables are unmeasurable or cannot be computed from the outputs, they should also be estimated. We examine the separation principle of this case. If the decay rates of the T-S fuzzy-model-based control and observer are sufficiently fast, the global separation is assured. Otherwise we show that the separation principle holds locally.

Robust Control of IPMSM Using T-S Fuzzy Disturbance Observer (T-S 퍼지 외란 관측기를 이용한 IPMSM의 강인 제어)

  • Kim, Min-Chan;Li, Xiu-Kun;Park, Seung-Kyu;Kwak, Gun-Pyong;Ahn, Ho-Kyun;Yoon, Tae-Sung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.4
    • /
    • pp.973-983
    • /
    • 2015
  • To improve the control performance of the IPMSM, a novel nonlinear disturbance observer is proposed by using the T-S fuzzy model. A T-S fuzzy model is the combination of local linear models considered at each operating point. Usually the inverse model is easy to obtain in linear systems but not in nonlinear systems. To design a nonlinear disturbance observer, a nonlinear inverse model is obtained based on nonlinear inverse model which is the fuzzy combination of the local linear inverse models. The proposed DOB is used with a PDC controller which is one of the T-S fuzzy controller, and its performance improvement is shown from the simulation results.

Forecasting of the water quality in Youngsan river using by GA and T-S Fuzzy system (GA와 T-S 퍼지시스템에 의한 영산강 수질 예측)

  • Park, Sung Chun;Oh, Chang Ryol;Kim, San Won
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.1381-1384
    • /
    • 2004
  • 대상 지점의 수질 예측은 단순한 모델로 설명하는데 쉽지 않을 뿐만 아니라 많은 오차를 내포하고 있다. 그러나 최근, 신경회로망, 퍼지 논리, 전문가 시스템 및 유전자 알고리즘과 같은 인공지능이 대두되면서 복잡한 비선형 과정들을 나타낼 수 있게 되었다. 나아가 진정한 인공 지능을 실현하기 위해서는 신경회로망, 퍼지 논리, 전문가 시스템 및 유전자 알고리즘을 보다 효과적으로 이용하고 통합해야 가능할 것으로 기대된다. 본 연구에서는 유전자 알고리즘(Genetic Algorithm)을 T-S 퍼지시스템(Takagj-Sugeno Fuzzy system)의 삼각형 멤버쉽 함수 형태와 규칙 베이스를 최적화하기 위한 도구로 사용하였으면, 예측은 T-S 퍼지 시스템을 이용하여 실시하였다. 대상지점은 영산강 유역의 나주지점을 선정하여 유량자료 및 수질자료를 이용하여 GA와 T-S 퍼지 시스템의 결합에 의해 수질 예측을 실시할 결과 돌연변이율$(P_m)$ $0.05\~0.1$에서 우수한 결과를 얻을 수 있었다.

  • PDF

T-S Fuzzy Modeling for Container Cranes Using a RCGA Technique (RCGA 기법을 이용한 컨테이너 크레인의 T-S 퍼지 모델링)

  • Lee, Yun-Hyung;Yoo, Heui-Han;Jung, Byung-Gun;So, Myung-Ok;Jin, Gang-Gyoo;Oh, Sea-June
    • Journal of Navigation and Port Research
    • /
    • v.31 no.8
    • /
    • pp.697-703
    • /
    • 2007
  • In this paper, we focuses on the development of Takagi-Sugeno (T-S) fuzzy modeling in a nonlinear container crane system. A T-S fuzzy model is characterized by fuzzy "if-then" rules which represent the locally input-output relationship whose consequence part is described by a state space equation as subsystem. The T-S fuzzy model in container cranes first obtains a few number of linear models according to operation conditions and blends these conditions using fuzzy membership functions. Parameters of the membership functions are adjusted by a RCGA to have same dynamic characteristics with nonlinear system of a container crane. Simulations are given to illustrate the performance of T-S fuzzy model.

The study on Induction motor of 'T-S Fuzzy Identification' (T-S Fuzzy Identification을 이용한 유도전동기 구현에 관한 연구)

  • Lee, Seung-Taek;Lee, Dong-Kwang;Ann, Ho-Kyun;Park, Seung-Kyu;Ahn, Jong-Keon;Yun, Tae-Sung;Kwak, Gun-Pyong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.5
    • /
    • pp.973-981
    • /
    • 2012
  • In this paper, it suggest that nonlinear multivariable system control of induction motor using 'T-S Fuzzy Identification' 'T-S Fuzzy model of linearization' is not easy because of that arithmetic is difficult in computation of the function. Therefore 'T-S Fuzzy Identification' is suggested that the rules and functions through the estimation of high accuracy provides linearized model.

Trajectory Tracking Control of Mobile Robot using Multi-input T-S Fuzzy Feedback Linearization (다중 입력 T-S 퍼지 궤환 선형화 기법을 이용한 이동로봇의 궤도 추적 제어)

  • Hwang, Keun-Woo;Kim, Hyeon-Woo;Park, Seung-Kyu;Kwak, Gun-Pyong;Ahn, Ho-Kyun;Yoon, Tae-Sung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.7
    • /
    • pp.1447-1456
    • /
    • 2011
  • In this paper, we propose a T-S fuzzy feedback linearization method for controlling a non-linear system with multi-input, and the method is applied for trajectory tracking control of wheeled mobile robot. First, an error dynamic equation of wheeled mobile robot is represented by a T-S fuzzy model, and then the T-S fuzzy model is transformed to a linear control system through the nonlinear fuzzy coordinate change and the nonlinear state feedback input. Simulation results showed that the trajectory tracking controller by using the proposed multi-input feedback linearization method gives better performance than the trajectory tracking controller by using the PDC(Parallel Distributed Compensation) method for controlling the T-S Fuzzy system.

A Relaxed Stabilization Condition for Discrete T-S Fuzzy Model under Imperfect Premise Matching (불완전한 전반부 정합 하에서의 이산 T-S 퍼지 모델에 대한 완화된 안정화 조건)

  • Lim, Hyeon Jun;Joo, Young Hoon;Park, Jin Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.27 no.1
    • /
    • pp.59-64
    • /
    • 2017
  • In this paper, a controller for discrete Takagi-Sugeno(T-S) fuzzy model under imperfect premise matching is proposed. Most of previous papers have obtained the stabilization condition using common quadratic Lyapunov function. However, the stabilization condition may be conservative due to the typical disadvantage of the common quadratic Lyapunov function. Hence, in order to solve this problem, we propose the stabilization condition of discrete T-S fuzzy model using fuzzy Lyapunov function. Finally, the proposed approach is verified by the simulation experiments.

Observer-based decentralized fuzzy controller design of nonlinear interconnected system for PEMFC (고분자 전해질 연료전지 시스템을 위한 비선형 상호결합 시스템의 관측기 기반 분산 퍼지 제어기 설계)

  • Koo, Geun-Bum;Park, Jin-Bae;Joo, Young-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.4
    • /
    • pp.423-429
    • /
    • 2011
  • This paper deals with the observer-based decentralized fuzzy controller design for nonlinear interconnected system for PEMFC. The nonlinear interconnected system is represented by a Takagi-Sugeno (T-S) fuzzy model. Based on T-S fuzzy interconnected system, the fuzzy observer and the decentralized fuzzy controller are designed. The stability condition of the closed-loop system with the proposed controller is represented to the linear matrix inequality (LMI) form, and the observer and control gain s are obtained by LMI. An example is given to show the verification discussed throughout the paper.

Automatic Generations and Representations of T-S Fuzzy Rule based on Neural Networks (신경망에 기초한 T-S 퍼지 규칙의 자동생성과 표현)

  • 황문선;오경환
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.310-316
    • /
    • 1998
  • 본 논문에서는 기존의 퍼지 제어규칙에비해 좋은 성능을 갖는 T-S(Takagi-Sugeno)퍼지 모델을 자기조직화 지도와 역전파 신경망을 이용하여 표현하고 제어기 구현을 위한 규칙의 자동 생성 방법을 제안한다. 제안된 방법은 신경망에 기초하여 T-S 퍼지 제어 규칙을 포현하므로써 학습 기능을 이용하여 지식 획득을 용이하게 하고, 입력 변수간의 퍼지 관계에 기반 하여 추론이 이루어지므로 각 퍼지 변수에 대한 소속 함수의 정의 과정이 불필요하게 된다. 또한 제어기로 구현되었을 때 규칙의 수나 퍼지화 및 비퍼지화 등이 구성된 추론망을 통하여 자동으로 수행될 수 있다. 때문에 퍼지 시스템의 구현이 쉽게 이루어 질 수 있게 한다. 제안된 방법을 자동차 궤도 안정화 모의 실험에 적용해 봄으로써 추론망이 규칙을 생성하여 타당한 추론을 하게 됨을 확인한다.

  • PDF

Design of the Robust Fuzzy Controller based on Fuzzy Lyapunov Functions (퍼지 리아푸노프 함수 기반 강인한 퍼지 제어기 설계)

  • Kim, Ho-Jun;Park, Jin-Bae;Joo, Young-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.5
    • /
    • pp.630-636
    • /
    • 2011
  • This paper is concerned with the stability analysis and stabilization for the Takagi-Sugeno(T-S) fuzzy systems with parametric uncertainties. To reduce conservativeness in stability analysis for T-S fuzzy systems, fuzzy Lyapunov functions are used. Stability analysis is performed and robust fuzzy controller is designed for stabilization of the system with parametric uncertainties. The stability and stabilization conditions are formulated in terms of linear matrix inequalities (LMIs). Finally, simulation example is presented to show the effectiveness of the proposed approach.