• Title/Summary/Keyword: T-DNA insertion

Search Result 70, Processing Time 0.028 seconds

DNA Polymorphisms in SREBF1 and FASN Genes Affect Fatty Acid Composition in Korean Cattle (Hanwoo)

  • Bhuiyan, M.S.A.;Yu, S.L.;Jeon, J.T.;Yoon, D.;Cho, Y.M.;Park, E.W.;Kim, N.K.;Kim, K.S.;Lee, J.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.6
    • /
    • pp.765-773
    • /
    • 2009
  • Sterol regulatory element binding factor 1 (SREBF1) and fatty acid synthase (FASN) genes play an important role in the biosynthesis of fatty acids and cholesterol, and in lipid metabolism. This study used polymorphisms in the intron 5 of bovine SREBF1 and in the thioesterase (TE) domain of FASN genes to evaluate their associations with beef fatty acid composition. A previously identified 84-bp indel (L: insertion/long type and S: deletion/short type) of the SREBF1 gene in Korean cattle had significant associations with the concentration of stearic (C18:0), linoleic (C18:2) and polyunsaturated fatty acids (PUFA). The stearic acid concentration was 6.30% lower in the SS than the LL genotype (p<0.05), but the linoleic and PUFA contents were 11.06% and 12.20% higher in SS compared to LL (p<0.05). Based on the sequence analysis, five single nucleotide polymorphisms (SNPs) g.17924G>A, g.18043C>T, g.18440G>A, g.18529G>A and g.18663C>T in the TE domain of the FASN gene were identified among the different cattle breeds studied. Among these, only g.17924 G>A and g.18663C>T SNPs were segregating in the Hanwoo population. The g.17924G>A SNP is a non-synonymous mutation (thr2264ala) and was significantly associated with the contents of palmitic (C16:0) and oleic acid (C18:1). The oleic acid concentration was 3.18% and 2.79% higher in Hanwoo with the GG genotype than the AA and AG genotypes, respectively (p<0.05), whereas the GG genotype had 3.8% and 4.01% lower palmitic acid than in those cattle with genotype AA and AG, respectively (p<0.05). Tissue expression data showed that SREBFI and FASN genes were expressed in a variety of tissues though they were expressed preferentially in different muscle tissues. In conclusion, the 84-bp indel of SREBF1 and g.17924G>A SNP of the FASN gene can be used as DNA markers to select Hanwoo breeding stock for fatty acid composition.

Expression of Nucleocapsid Protein Gene of Maaji Virus and Use of the Protein as an Immunodiagnostic Antigen of Hemorrhagic Fever with Renal Syndrome (마지바이러스 Nucleocapsid Protein 유전자의 발현과 신증후 출혈열 진단용 항원으로의 이용)

  • Lee, Pyung-Woo;Kim, Yun-Cheol;Paik, Woo-Hyun
    • The Journal of Korean Society of Virology
    • /
    • v.26 no.1
    • /
    • pp.77-90
    • /
    • 1996
  • Nucleocapsid protein (NP)which exists in the particle of hantavirus and surrounds the viral RNA genome is one of the major structural proteins and plays role of antigen to elicit the antibody detected predorminantly right after infection of the virus in the patients of hemorragic fever with renal syndrome (HFRS)or experimental animals. NP is important target antigen in serological diagnostic system of HFRS utilizing whole antigens from the native virus particle, such as IFA, ELISA and Western blotting. Therefore, the preparation of this protein in the level of higher quantity and purity is desirasble for developed dianosis of the disease. The purpose of this study is the cloning of NP gene which exists in the S genome segment of Maaji (MAA) virus and expression of the gene to obtain qualified, genetically engineered NP to be utilized as an immunodiagnostic antigen. First of all, for the purpose of amplifing the MAA-NP gene by PCR, the specific primers were built from the known nucleotide sequence of Hantaan viral NP gene. The viral cDNA of the NP gene was synthesized by using the primers and RNase $H^-$ AMV reverse transcriptase. Thereafter, using this cDNA as a template, the NP gene was amplified specifically by Taq DNA polymrerase. The pT7blue (R)T-overhang vector systems were used for cloning of the amplified NP gene. The expression system was consisted of BL21 (DE3)pLysS and pET16b as a host and a plasmid repectively. Into Ndel site of pET16b, NP gene was ligated with cohesive end for the expression. Insertion of NP gene in the plasmid was confirmed by PCR and mini prep methods. For expression, IPTG was used and the expressed protein was characterized by Western blotting. The MAA-NP was expressed as the form of inclusion body (insoluble fraction)and the protein purified by affinity and metal chealating columns reacted specifically with the sera from patients of HFRS as to be tested by ELISA and Western blotting.

  • PDF

Analysis of Chromosome aberrations by fluorescence in situ hybridization using triple chromosome-specific probes in human lymphocyte exposed to radiation (3중 DNA probe를 이용한 FISH(fluorescence in situ hybridization) 기법으로 방사선에 의한 염색체 이상 분석)

  • Chung, Hai-Won;Kim, Su-Young;Ha, Sung-Whan
    • Journal of Radiation Protection and Research
    • /
    • v.24 no.1
    • /
    • pp.45-53
    • /
    • 1999
  • Fluorescence in situ hybridization with chromosome-specific probe has been shown to be a valid and rapid method for detection of chromosome rearrangements induced by radiation. This method is useful for quantifying structural aberrations, expecially for stable ones, such as translocation and insertion, which are difficult to detect with conventional method in human lymphocyte. In order to apply FISH method for high dose biological dosimetry, chromosomal abberations by radiation at doses of 1, 3, 5, and 7Gy were analysed with whole chromosome-specific probes by human chromosome 1, 2 and 4 according to PAINT system. The frequencies of stable translocation per cell equivalent were 0.04, 0.33, 1.22, 2.62, and 5.58 for the lymphocyte exposed to 0, 1, 3, 5, and 7Gy, respectively, and those of dicentric were 0.00, 0.06, 0.52, 1.19 and 2.44, respectively. Significantly more translocation of t(Ab), a translocated chromosome with a piece of painted acentric matrial 'b' attached to unpainted piece containing centromere 'A', than reciprocal chromosome t(Ba) was observed. The frequencies of all type of chromosome rearrangements increased with dose. From above result, FISH seemed to be useful for radiation biodosimetry by which the frequencies of various types of stable aberrations in human lymphocyte can be observed more easily than by conventional method and so will improve our ability to perform meaningful biodosimetry.

  • PDF

Expression of tissue-type plasminogen activator and its derivative proteins in transgenic alfalfa plants (조직형 플라스미노겐 액티베이터와 관련 변이 단백질들을 발현하는 알팔파 형질전환체)

  • Sim, Joon-Soo;Rhee, Yong;Ko, Hyo-Rim;Pak, Hyo-Kyung;Kim, Hyeong-Mi;Lim, Kyu-Hee;An, Ki-Seong;Kim, Yong-Hwan;Hahn, Bum-Soo
    • Journal of Plant Biotechnology
    • /
    • v.36 no.1
    • /
    • pp.30-37
    • /
    • 2009
  • Tissue-type plasminogen activator (t-PA) is a thrombolytic agent important in fibirn clot lysis. T-PA causes fibirn-specific plasminogen activation. Six binary vectors harboring t-PA and its derivative genes were cloned and expressed in transgenic alfalfa plants. The insertion of the t-PA and its derivative genes in genomic DNA of alfalfa plants was confirmed by PCR. The presence of the t-PA and its derivative transcripts in total RNAs of the transgenic alfalfa leaves was verified by RT-PCR. ELISA experiments demonstrated that the highest level of recombinant t-PA expression was $75.1{\mu}g$/ total soluble protein (mg) in alfalfa plants. The amount of recombinant t-PA and its derivative proteins in transgenic plants was estimated to range from 9.7 to $39.5{\mu}g$/ total soluble proteins (mg). Western blot analysis of the transformed alfalfa leaves revealed bands of approximately 68-kDa recombinant t-PA and its derivative proteins. The fibrinolysis of recombinant t-PA and its derivative proteins was confirmed by a fibrin plate assay (range from 3.2 to 8.1 cm). The results presented provide information for the development of an additional production of recombinant human proteins having pharmaceutical applications using transgenic plants.

Current status of Ac/Ds mediated gene tagging systems for study of rice functional genomics in Korea (Ac/Ds 삽입 변이체를 이용한 벼 유전자 기능 연구)

  • Lee, Gang-Seob;Park, Sung-Han;Yun, Do-Won;Ahn, Byoung-Ohg;Kim, Chang-Kug;Han, Chang-Deok;Yi, Gi-Hwan;Park, Dong-Soo;Eun, Moo-Young;Yoon, Ung-Han
    • Journal of Plant Biotechnology
    • /
    • v.37 no.2
    • /
    • pp.125-132
    • /
    • 2010
  • Rice is the staple food of more than 50% of the worlds population. Cultivated rice has the AA genome (diploid, 2n=24) and small genome size of only 430 megabase (haploid genome). As the sequencing of rice genome was completed by the International Rice Genome Sequencing Project (IRGSP), many researchers in the world have been working to explore the gene function on rice genome. Insertional mutagenesis has been a powerful strategy for assessing gene function. In maize, well characterized transposable elements have traditionally been used to clone genes for which only phenotypic information is available. In rice endogenous mobile elements such as MITE and Tos (Hirochika. 1997) have been used to generate gene-tagged populations. To date T-DNA and maize transposable element systems has been utilized as main insertional mutagens in rice. A main drawback of a T-DNA scheme is that Agrobacteria-mediated transformation in rice requires extensive facilities, time, and labor. In contrast, the Ac/Ds system offers the advantage of generating new mutants by secondary transposition from a single tagged gene. Revertants can be utilized to correlate phenotype with genotype. To enhance the efficiency of gene detection, advanced gene-tagging systems (i.e. activation, gene or enhancer trap) have been employed for functional genomic studies in rice. Internationally, there have been many projects to develop large scales of insertionally mutagenized populations and databases of insertion sites has been established. Ultimate goals of these projects are to supply genetic materials and informations essential for functional analysis of rice genes and for breeding using agronomically important genes. In this report, we summarize the current status of Ac/Ds-mediated gene tagging systems that has been launched by collaborative works from 2001 in Korea.

Occurrence of Apple scar viroid-Korean strain (ASSVd-K) in Apples Cultivated in Korea

  • Lee, Ju-Hee;Park, Jean-Kyung;Lee, Dong-Hyuk;Uhm, Jae-Youl;Ghim, Sa-Youl;Lee, Jai-Youl
    • The Plant Pathology Journal
    • /
    • v.17 no.5
    • /
    • pp.300-304
    • /
    • 2001
  • Apple is the most economically important fruit in Korea. The suspected viroid disease of dapple apple was found in apple fruits cultivated in Kyungpook province. Symptoms begin in mid-July as small circular spots, which stand out against the background color on the young fruit. Dappling of the fruit becomes more intense and easier to detect as the fruit approaches maturity; the affected spots remain yellowish as the fruit matures. no leaf or bark syndromes have been associated with this disease. The infected fruits are downgraded considerably during quality grading. The low molecular weight RNA containing viroid RNA molecules were extracted from the peels of the apples with dapple symptoms. The RNA molecules were extracted from the apples using Qiagen column chromatography. The purified RNAs were used for the synthesis of cDNA with RT-PCR. The PCR products were then ligated into a pGEM-T Easy vector, cloned and sequenced. The sequence of the viroid RNA molecule shows 331 nucleotides with one base difference ("G" insertion between the position of 133 and 134) compared with that of the Apple scar skin viroid (ASSVd) reported by Hashimoto and Koganezawa in Japan. This is the first report on the occurrence of the ASSVd in apple trees cultivated in Korea, as well as the identification of a new Korean strain of the ASSVd.the ASSVd.

  • PDF

The Expression Patterns of AtBSMT1 and AtSAGT1 Encoding a Salicylic Acid (SA) Methyltransferase and a SA Glucosyltransferase, Respectively, in Arabidopsis Plants with Altered Defense Responses

  • Song, Jong Tae;Koo, Yeon Jong;Park, Jong-Beum;Seo, Yean Joo;Cho, Yeon-Jeong;Seo, Hak Soo;Choi, Yang Do
    • Molecules and Cells
    • /
    • v.28 no.2
    • /
    • pp.105-109
    • /
    • 2009
  • We reported previously that overexpression of a salicylic acid (SA) methyltransferase1 gene from rice (OsBSMT1) or a SA glucosyltransferase1 gene from Arabidopsis thaliana (AtSAGT1) leads to increased susceptibility to Pseudomonas syringae due to reduced SA levels. To further examine their roles in the defense responses, we assayed the transcript levels of AtBSMT1 or AtSAGT1 in plants with altered levels of SA and/or other defense components. These data showed that AtSAGT1 expression is regulated partially by SA, or nonexpressor of pathogenesis related protein1, whereas AtBSMT1 expression was induced in SA-deficient mutant plants. In addition, we produced the transgenic Arabidopsis plants with RNAi-mediated inhibition of AtSAGT1 and isolated a null mutant of AtBSMT1, and then analyzed their phenotypes. A T-DNA insertion mutation in the AtBSMT1 resulted in reduced methyl salicylate (MeSA) levels upon P. syringae infection. However, accumulation of SA and glucosyl SA was similar in both the atbsmt1 and wild-type plants, indicating the presence of another SA methyltransferase or an alternative pathway for MeSA production. The AtSAGT1-RNAi line exhibited no altered phenotypes upon pathogen infection, compared to wild-type plants, suggesting that (an)other SA glucosyltransferase(s) in Arabidopsis plants may be important for the pathogenesis of P. syringae.

The Rice FON1 Gene Controls Vegetative and Reproductive Development by Regulating Shoot Apical Meristem Size

  • Moon, Sunok;Jung, Ki-Hong;Lee, Do-Eun;Lee, Dong-Yeon;Lee, Jinwon;An, Kyungsook;Kang, Hong-Gyu;An, Gynheung
    • Molecules and Cells
    • /
    • v.21 no.1
    • /
    • pp.147-152
    • /
    • 2006
  • Most plant organs develop from meristems. Rice FON1, which is an ortholog of Clv1, regulates stem cell proliferation and organ initiation. The point mutations, fon1-1 and fon1-2, disrupt meristem balance, resulting in alteration of floral organ numbers and the architecture of primary rachis branches. In this study, we identified two knockout alleles, fon1-3 and fon1-4, generated by T-DNA and Tos17 insertion, respectively. Unlike the previously isolated point mutants, the null mutants have alterations not only of the reproductive organs but also of vegetative tissues, producing fewer tillers and secondary rachis branches. The mutant plants are semi-dwarfs due to delayed leaf emergence, and leaf senescence is delayed. SEM analysis showed that the shoot apical meristems of fon1-3 mutants are enlarged. These results indicate that FON1 controls vegetative as well as reproductive development by regulating meristem size.

The Role of Rice Vacuolar Invertase2 in Seed Size Control

  • Lee, Dae-Woo;Lee, Sang-Kyu;Rahman, Md Mizanor;Kim, Yu-Jin;Zhang, Dabing;Jeon, Jong-Seong
    • Molecules and Cells
    • /
    • v.42 no.10
    • /
    • pp.711-720
    • /
    • 2019
  • Sink strength optimizes sucrose import, which is fundamental to support developing seed grains and increase crop yields, including those of rice (Oryza sativa). In this regard, little is known about the function of vacuolar invertase (VIN) in controlling sink strength and thereby seed size. Here, in rice we analyzed mutants of two VINs, OsVIN1 and OsVIN2, to examine their role during seed development. In a phenotypic analysis of the T-DNA insertion mutants, only the OsVIN2 mutant osvin2-1 exhibited reduced seed size and grain weight. Scanning electron microscopy analysis revealed that the small seed grains of osvin2-1 can be attributed to a reduction in spikelet size. A significant decrease in VIN activity and hexose level in the osvin2-1 spikelets interfered with spikelet growth. In addition, significant reduction in starch and increase in sucrose, which are characteristic features of reduced turnover and flux of sucrose due to impaired sink strength, were evident in the pre-storage stage of osvin2-1 developing grains. In situ hybridization analysis found that expression of OsVIN2 was predominant in the endocarp of developing grains. A genetically complemented line with a native genomic clone of OsVIN2 rescued reduced VIN activity and seed size. Two additional mutants, osvin2-2 and osvin2-3 generated by the CRISPR/Cas9 method, exhibited phenotypes similar to those of osvin2-1 in spikelet and seed size, VIN activity, and sugar metabolites. These results clearly demonstrate an important role of OsVIN2 as sink strength modulator that is critical for the maintenance of sucrose flux into developing seed grains.

A Gene Functional Study of Rice Using Ac/Ds Insertional Mutant Population

  • Kim, So-Young;Kim, Chang-Kug;Kang, Min;Ji, Seung-Uk;Yoon, Ung-Han;Kim, Yong-Hwan;Lee, Gang-Seob
    • Plant Breeding and Biotechnology
    • /
    • v.6 no.4
    • /
    • pp.313-320
    • /
    • 2018
  • Rice is the staple food of more than 50% of the world population. Cultivated rice has the AA genome (diploid, 2n = 24) and small genome size of only 430 megabase (haploid genome). As the sequencing of rice genome was completed by the International Rice Genome Sequencing Project (IRGSP), many researchers in the world have been working to explore the gene function on rice genome. Insertional mutagenesis has been a powerful strategy for assessing gene function. In maize, well characterized transposable elements have traditionally been used to clone genes for which only phenotypic information is available. In rice endogenous mobile elements such as MITE and Tos have been used to generate gene-tagged populations. To date T-DNA and maize transposable element systems have been utilized as main insertional mutagens in rice. The Ac/Ds system offers the advantage of generating new mutants by secondary transposition from a single tagged gene. To enhance the efficiency of gene detection, advanced gene-tagging systems (i.e. activation, gene or enhancer trap) have been employed for functional genomic studies in rice. Internationally, there have been many projects to develop large scales of insertional mutagenized populations and databases of insertion sites has been established. Ultimate goals of these projects are to supply genetic materials and informations essential for functional analysis of rice genes and for breeding using agronomically important genes. In this report, we summarize the current status of Ac/Ds-mediated gene tagging systems that has been conducted by collaborative works in Korea.