DOI QR코드

DOI QR Code

Current status of Ac/Ds mediated gene tagging systems for study of rice functional genomics in Korea

Ac/Ds 삽입 변이체를 이용한 벼 유전자 기능 연구

  • Lee, Gang-Seob (Genomics Division, National Academy of Agricultural Science, RDA) ;
  • Park, Sung-Han (Genomics Division, National Academy of Agricultural Science, RDA) ;
  • Yun, Do-Won (Genomics Division, National Academy of Agricultural Science, RDA) ;
  • Ahn, Byoung-Ohg (Genomics Division, National Academy of Agricultural Science, RDA) ;
  • Kim, Chang-Kug (Genomics Division, National Academy of Agricultural Science, RDA) ;
  • Han, Chang-Deok (Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University) ;
  • Yi, Gi-Hwan (Functional Crop Resource Development Division, Department of Functional Crop, National Institute of Crop Science, RDA) ;
  • Park, Dong-Soo (Functional Crop Resource Development Division, Department of Functional Crop, National Institute of Crop Science, RDA) ;
  • Eun, Moo-Young (Kyungpook National University & Gunwi Agriculture Technology Center) ;
  • Yoon, Ung-Han (Genomics Division, National Academy of Agricultural Science, RDA)
  • Received : 2010.04.18
  • Accepted : 2010.04.29
  • Published : 2010.06.30

Abstract

Rice is the staple food of more than 50% of the worlds population. Cultivated rice has the AA genome (diploid, 2n=24) and small genome size of only 430 megabase (haploid genome). As the sequencing of rice genome was completed by the International Rice Genome Sequencing Project (IRGSP), many researchers in the world have been working to explore the gene function on rice genome. Insertional mutagenesis has been a powerful strategy for assessing gene function. In maize, well characterized transposable elements have traditionally been used to clone genes for which only phenotypic information is available. In rice endogenous mobile elements such as MITE and Tos (Hirochika. 1997) have been used to generate gene-tagged populations. To date T-DNA and maize transposable element systems has been utilized as main insertional mutagens in rice. A main drawback of a T-DNA scheme is that Agrobacteria-mediated transformation in rice requires extensive facilities, time, and labor. In contrast, the Ac/Ds system offers the advantage of generating new mutants by secondary transposition from a single tagged gene. Revertants can be utilized to correlate phenotype with genotype. To enhance the efficiency of gene detection, advanced gene-tagging systems (i.e. activation, gene or enhancer trap) have been employed for functional genomic studies in rice. Internationally, there have been many projects to develop large scales of insertionally mutagenized populations and databases of insertion sites has been established. Ultimate goals of these projects are to supply genetic materials and informations essential for functional analysis of rice genes and for breeding using agronomically important genes. In this report, we summarize the current status of Ac/Ds-mediated gene tagging systems that has been launched by collaborative works from 2001 in Korea.

Keywords

References

  1. Agrawal GK, Yamazaki M, Kobayashi M, Hirochika R, Miyao A, Hirochika H (2001) Screening of the rice viviporous mutants generated by endogenenous retrotransposon Tos17 insertion. Tagging of a zeaxanthin epoxidase gene and a novel OsTATC gene. Plant Physiol 125:1248-1257 https://doi.org/10.1104/pp.125.3.1248
  2. Ahn BO, Kang KH, Eun MY, Jeon YH, Yun DW, Ji HS, Park SH, Nam MH, Suh SC, Lee MC (2008) Trait variation and molecular characterization of Ds insertional rice lines. Korean J Breed Sci 40(1):39-47
  3. Chin HG, Choe MS, Lee SH, Park SH, Koo JC, Kim NY, Lee JJ, Oh BG, Yi GH, Kim SC, et al. (1999) Molecular analysis of rice plant harboring an Ac/Ds transposable element-mediated gene trapping system. Plant J. 19:615-623 https://doi.org/10.1046/j.1365-313X.1999.00561.x
  4. Dooner HK and Belachew A (1989) Transpositional pattern of the maize element Ac from the bz-m2(Ac) allele. Genetics 122:447-457
  5. Dooner HK, Keller J, Harper E, Ralston E (1991) Variable patterns of transposition of maize element Activator in tobacco. Plant Cell 3:473-482 https://doi.org/10.1105/tpc.3.5.473
  6. Feng Q, Zhang Y, Hao P, Wang S, et al. (2002) Sequence and analysis of rice chromosome 4. Nature 420:316-320 https://doi.org/10.1038/nature01183
  7. Greco R, Ouwerkerk PB, De Kam RJ, Sallaud C, Favalli C, Colombo L, Guiderdoni E, Meijer AH, Hoge JH, Pereira A (2003) Transpositional behavior of an Ac/Ds system for reverse genetics in rice. Theor Appl Genet 108:10-24 https://doi.org/10.1007/s00122-003-1416-8
  8. Greco R, Ouwerkerk PB, Taal AJ, Sallaud C, Guiderdoni E, Meijer AH, Hoge JH, Pereira A (2004) Transcription and somatic transposition of the maize En/Spm transposon system in rice. Mol Genet Genomics 270:514-523 https://doi.org/10.1007/s00438-003-0942-z
  9. Greenblatt IM (1984) A chromosome replication pattern deduced from pericarp phenotypes resulting from movements of the transposable element, modulator, in maize. Genetics 108:471-485
  10. Hirochika H, Sugimoto K, Otski Y, Tsugawa H, Kanda M (1996) Retro- transposones of rice involved in mutations induced by tissue culture. Proc. Natl. Acad. Sci. USA 93:7783-7788 https://doi.org/10.1073/pnas.93.15.7783
  11. Hirochika H (1997) Retrotransposons of rice : their regulation and use for genome analysis. Plant Mol. Biol. 35:231-240 https://doi.org/10.1023/A:1005774705893
  12. Jeon JS, Lee S, Jung KH, Jeong DH, Lee J, Kim C, Jang S, Yang K, Nam J, An K, Han MJ, Sung RJ, Choi HS, Yu JH, Choi JH, Cho SY, Cha SS, Kim SI, An G (2000) T-DNA insertional mutagenesis for functional genomics in rice, Plant J 22:561-570 https://doi.org/10.1046/j.1365-313x.2000.00767.x
  13. Jeong DH, An S, Kang HG, Moon S, Han JJ, Park S, Lee HS, An K, An G (2002) T-DNA insertional mutagenesis for activation tagging in rice, Plant Physiol, 130:1636-1644 https://doi.org/10.1104/pp.014357
  14. Jiang SY, Bachman D, La H, Ma Z, Venkatesh PN, Ramamoorthy R, Ramachandran S (2007) Ds insertion mutagenesis as an efficient tool to produce diverse variation for rice breeding. Plant Mol Biol 65:385-402 https://doi.org/10.1007/s11103-007-9233-0
  15. Jiang SY, Cai M, Ramachandran S (2007) ORYZA SATIVA MYOSIN XI B controls pollen development by photoperiodsensitive protein localizations. 304:579-592 https://doi.org/10.1016/j.ydbio.2007.01.008
  16. Jun Y, Songnian H, Jun W, Gane Ka-Shu W et al. (2002) A draft sequence of the rice genome(Oryza sativa L. ssp. indica). Science 296:79-91 https://doi.org/10.1126/science.1068037
  17. Jung KH, Hur J, Ryu CH, Choi Y, Chung YY, Miyao A, Hirochika H, An G (2003) Characterization of a rice chlorophyll-deficient mutant using the T-DNA gene-trap system. Plant Cell Physiol 44:463-472 https://doi.org/10.1093/pcp/pcg064
  18. Kang HG, Park S, Matsoka M, An G (2005) White-core endosperm floury endosperm-4 in rice is generated by knockout mutation in the C-type pyruvate orthophosphate dikinase gene (OsPPDKB). Plant J 42:901-911 https://doi.org/10.1111/j.1365-313X.2005.02423.x
  19. Kim CM, Park SH, Je BI, Park SH, Park SJ, Piao HL, Eun MY, Dolan L, Han CD (2007) OsCSLD1, a Cellulose Synthase-Like D1 gene, is required for root hair morphogenesis in rice. Plant Physiol 143:1220-1230 https://doi.org/10.1104/pp.106.091546
  20. Kim CM, Piao HL, Park SJ, Chon NS, Je BI, Sun B, Park SH, et al. (2004) Rapid, large-scale generation of Ds transposant lines and analysis of the Ds insertion sites in rice. Plant J. 39(2):252-263 https://doi.org/10.1111/j.1365-313X.2004.02116.x
  21. Kolensik T, Szeverenyi I, Bachman D, Kumar CS, Jiang S, Ramamoorthy R, Cai M, M ZG, Sundaresan V, Ramachandran S (2004) Establishing an efficient Ac/Ds tagging system in rice: large-scale analysis of Ds flanking sequences. Plant J. 37:301-314 https://doi.org/10.1046/j.1365-313X.2003.01948.x
  22. Krishinan A, Guiderdoni E, An G, Hsing YC, Han CD, Lee MC, Yu SM, Upadhyaya N, Ramachandran S, Zhang Q, Sundaresan V, Hirochika H, Leung H, Pereira A (2009) Mutant resources in rice for functional genomics of the rice grasses. Plant Physiol 149:165-170 https://doi.org/10.1104/pp.108.128918
  23. Kumar CS, Wing RA, Sundaresan V (2005) Efficient insertional mutagenesis in rice using the maze En/Spm elements. Plant J 44:879-892 https://doi.org/10.1111/j.1365-313X.2005.02570.x
  24. Lee S, Kim J, Son JS, Nam J, Jeong DH, Lee K, Jang S, Yoo J, Lee J, Lee DY, et al. (2003) Systemic reverse genetic screening of T-DNA tagged genes in rice for functional genomic analysis: MADS-box genes as a test case. Plant Cell Physiol 44: 1403-1411 https://doi.org/10.1093/pcp/pcg156
  25. Margis-Pinheiro M, Zhou XR, Zhu QH, Dennis ES, Upadhyaya NM (2005) Isolation and characterization of a Ds-tagged rice (Oryza sativa L.) GA-responsive dwarf mutant detective in an early step of the gibberellin biosynthesis pathway. Plant Cell Report 23:819-833 https://doi.org/10.1007/s00299-004-0896-6
  26. Parinov S, Sundaresan V (2000) Functional genomics in Arabidopsis: large-scale insertional mutagenesis complements the genome sequencing project. Curr Opin Biotechnol 11:157-161 https://doi.org/10.1016/S0958-1669(00)00075-6
  27. Park DS, Park SK, Han SI, Wang HJ, Jun NS, Manigbas NL, Woo YM, Ahn BO, Yun DW, Yoon UH, Kim YH, Lee MC, Kim DH, Nam MH, Han CD, Kang HW, Yi GH (2009) Genetic variation through Dissociation (Ds) insertional mutagenesis system for rice in Korea: progress and current status. Mol Breeding 24:1-15 https://doi.org/10.1007/s11032-009-9300-0
  28. Park SH, Jun NS, Kim CM, Oh TY, Huang J, Xuan YH, Park SJ, Je BI, Piao, HL, Park SH, et al. (2007a) Analysis of gene-trap Ds rice population in Korea. Plant Mol Biol 65:373-384 https://doi.org/10.1007/s11103-007-9192-5
  29. Park SH, Kim CM, Je BI, Park SH, Park SJ, Piao HL, Xuan YH, Choe MS, Satoh K, Kikuchi S, Lee KH, Cha YS, Ahn BO, Ji HS, Yun DW, Lee MC, Suh SC, Eun MY, Han CD (2007b) A Ds-insertion mutant of OSH6 (Oryza sativa Homeobox 6) exhibits outgrowth of vestigial leaf-like structures, bracts, in rice. Planta 227:1-12 https://doi.org/10.1007/s00425-007-0576-1
  30. Park SJ, Kim SL, Lee SY, Je BI, Piao HL, Park SH, Kim CM, Ryu CH, Park SH, Xuan YH, Colasanti J, An G, Han CD (2008) Rice Indeterminate 1 (Osld1) is necessary for the expression of Ehd1 (Early heading date 1) regardless of photoperiod. The Plant Journal 56:1018-1029 https://doi.org/10.1111/j.1365-313X.2008.03667.x
  31. Takano M, Kanegae H, Shinomura T, Miyao A, Hirochika H, Furuya M (2001) Isolation and characterization of rice phytochrome A mutants. Plant Cell 13:521-534 https://doi.org/10.1105/tpc.13.3.521
  32. Upadhyaya NM, Zhou XR, Ramm K, Zhu QH, Wu L, Eamens A, Sivakumar R, Kato T, Yun DW, Kumar S, et al. (2002) An iAc/Ds gene and enhancer trapping system for insertional mutagenesis in rice. Funct Plant Biol 29:547-559 https://doi.org/10.1071/PP01205
  33. Wu C, Li X, Yuan W, Chen G, Kilian A, Li J, Xu C, Li X, Zhou DX, Wang S, Zhang Q (2003) Development of enhancer trap lines for functional analysis of the rice genome. Plant J. 35:418-4270 https://doi.org/10.1046/j.1365-313X.2003.01808.x
  34. Zhu QH, Eun MY, Han CD, Kumar CS, Pereira A, Ramachandran S, Sundaresan V, Eamens AL, Upadhyaya NM, Wu R (2007) Transposon insertional mutants: a resource for rice functional Genomics. In NM Upadhyaya. ed, Rice Functional Genomics - Challenges, Progress and Prospects. Springer, New York, pp. 223-271
  35. Zhu QH, Hoque MS, Dennis ES, Upadhyaya NM (2003) Ds tagging of BRANCHED FLORETLESS 1 (BFL1) that mediates the transition from spikelet to floret meristem in rice (Oryza sativa L.) BMC Plant Biology 3:6 https://doi.org/10.1186/1471-2229-3-6