References
- Andersen, M.N., Asch, F., Wu, Y., Jensen, C.R., Naested, H., Mogensen, V.O., and Koch, K.E. (2002). Soluble invertase expression is an early target of drought stress during the critical, abortion-sensitive phase of young ovary development in maize. Plant Physiol. 130, 591-604. https://doi.org/10.1104/pp.005637
- Barratt, D.H.P., Derbyshire, P., Findlay, K., Pike, M., Wellner, N., Lunn, J., Feil, R., Simpson, C., Maule, A.J., and Smith, A.M. (2009). Normal growth of Arabidopsis requires cytosolic invertase but not sucrose synthase. Proc. Natl. Acad. Sci. U. S. A. 106, 13124-13129. https://doi.org/10.1073/pnas.0900689106
- Braun, D.M., Wang, L., and Ruan, Y.L. (2014). Understanding and manipulating sucrose phloem loading, unloading, metabolism, and signalling to enhance crop yield and food security. J. Exp. Bot. 65, 1713-1735. https://doi.org/10.1093/jxb/ert416
- Chamont, S. (1993). Sink strength: the key for plant yield modeling. Plant Cell Environ. 16, 1033-1034. https://doi.org/10.1111/j.1365-3040.1996.tb02056.x
- Chang, T.G., Zhu, X.G., and Raines, C. (2017). Source-sink interaction: a century old concept under the light of modern molecular systems biology. J. Exp. Bot. 68, 4417-4431. https://doi.org/10.1093/jxb/erx002
- Cheng, C.L., Acedo, G.N., Cristinsin, M., and Conkling, M.A. (1992). Sucrose mimics the light induction of Arabidopsis nitrate reductase gene transcription. Proc. Natl. Acad. Sci. U. S. A. 89, 1861-1864. https://doi.org/10.1073/pnas.89.5.1861
- Cho, J.I., Lee, S.K., Ko, S., Kim, H.K., Jun, S.H., Lee, Y.H., Bhoo, S.H., Lee, K.W., An, G., Hahn, T.R., et al. (2005). Molecular cloning and expression analysis of the cell-wall invertase gene family in rice (Oryza sativa L.). Plant Cell Rep. 24, 225-236. https://doi.org/10.1007/s00299-004-0910-z
- Coleman, H.D., Yan, J., and Mansfield, S.D. (2009). Sucrose synthase affects carbon partitioning to increase cellulose production and altered cell wall ultrastructure. Proc. Natl. Acad. Sci. U. S. A. 106, 13118-13123. https://doi.org/10.1073/pnas.0900188106
- Cottage, A., Mott, E.K., Kempster, J.A., and Gray, J.C. (2010). The Arabidopsis plastid-signalling mutant gun1 (genomes uncoupled1) shows altered sensitivity to sucrose and abscisic acid and alterations in early seedling development. J. Exp. Bot. 61, 3773-3786. https://doi.org/10.1093/jxb/erq186
- Eom, J.S., Cho, J.I., Reinders, A., Lee, S.W., Yoo, Y., Tuan, P.Q., Choi, S.B., Bang, G., Park, Y.I., Cho, M.H., et al. (2011). Impaired function of the tonoplastlocalized sucrose transporter in rice, OsSUT2, limits the transport of vacuolar reserve sucrose and affects plant growth. Plant Physiol. 157, 109-119. https://doi.org/10.1104/pp.111.176982
- Gonzalez, M.C., Roitsch, T., and Cejudo, F.J. (2005). Circadian and developmental regulation of vacuolar invertase expression in petioles of sugar beet plants. Planta 222, 386-395. https://doi.org/10.1007/s00425-005-1542-4
- Hanson, J., Hanssen, M., Wiese, A., Hendriks, M.M.W.B., and Smeekens, S. (2008). The sucrose regulated transcription factor bZIP11 affects amino acid metabolism by regulating the expression of ASPARAGINE SYNTHETASE1 and PROLINE DEHYDROGENASE2. Plant J. 53, 935-949. https://doi.org/10.1111/j.1365-313X.2007.03385.x
- Hirose, T., Takano, M., and Terao, T. (2002). Cell wall invertase in developing rice caryopsis: molecular cloning of OsCIN1 and analysis of its expression in relation to its role in grain filling. Plant Cell Physiol. 43, 452-459. https://doi.org/10.1093/pcp/pcf055
- Ishimaru, T. (2005). Expression patterns of genes encoding carbohydratemetabolizing enzymes and their relationship to grain filling in rice (Oryza sativa L.): comparison of caryopses located at different positions in a panicle. Plant Cell Physiol. 46, 620-628. https://doi.org/10.1093/pcp/pci066
- Jain, M., Nijhawan, A., Tyagi, A.K., and Khurana, J.P. (2006). Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. Biochem. Biophys. Res. Commun. 345, 646-651. https://doi.org/10.1016/j.bbrc.2006.04.140
- Jeon, J.S., Lee, S., Jung, K.H., Jun, S.H., Jeong, D.H., Lee, J., Kim, C., Jang, S., Yang, K., Nam, J., et al. (2000). T-DNA insertional mutagenesis for functional genomics in rice. Plant J. 22, 561-570. https://doi.org/10.1046/j.1365-313x.2000.00767.x
- Jeong, D.H., An, S., Park, S., Kang, H.G., Park, G.G., Kim, S.R., Sim, J., Kim, Y.O., Kim, M.K., Kim, S.R., et al. (2006). Generation of a flanking sequencetag database for activation-tagging lines in japonica rice. Plant J. 45, 123-132. https://doi.org/10.1111/j.1365-313X.2005.02610.x
- Ji, X., Van den Ende, W., Schroeven, L., Clerens, S., Geuten, K., Cheng, S., and Bennett, J. (2007). The rice genome encodes two vacuolar invertases with fructan exohydrolase activity but lacks the related fructan biosynthesis genes of the Pooideae. New Phytol. 173, 50-62. https://doi.org/10.1111/j.1469-8137.2006.01896.x
- Ji, X., Van den Ende, W., Van Laere, A., Cheng, S., and Bennett, J. (2005). Structure, evolution, and expression of the two invertase gene families of rice. J. Mol. Evol. 60, 615-634. https://doi.org/10.1007/s00239-004-0242-1
- Jin, Y., Ni, D.A., and Ruan, Y.L. (2009). Posttranslational elevation of cell wall invertase activity by silencing its inhibitor in tomato delays leaf senescence and increases seed weight and fruit hexose level. Plant Cell 21, 2072-2089. https://doi.org/10.1105/tpc.108.063719
- Kim, J.Y., Mahe, A., Brangeon, J., and Prioul, J.L. (2000). A maize vacuolar invertase, IVR2, is induced by water stress. Organ/tissue specificity and diurnal modulation of expression. Plant Physiol. 124, 71-84. https://doi.org/10.1104/pp.124.1.71
- Klann, E.M., Chetelat, R.T., and Bennett, A.B. (1993). Expression of acid invertase gene controls sugar composition in tomato (Lycopersicon) fruit. Plant Physiol. 103, 863-870. https://doi.org/10.1104/pp.103.3.863
- Klann, E.M., Hall, B., and Bennett, A.B. (1996). Antisense acid invertase (TIV1) gene alters soluble sugar composition and size in transgenic tomato fruit. Plant Physiol. 112, 1321-1330. https://doi.org/10.1104/pp.112.3.1321
- Kocal, N., Sonnewald, U., and Sonnewald, S. (2008). Cell wall-bound invertase limits sucrose export and is involved in symptom development and inhibition of photosynthesis during compatible interaction between tomato and Xanthomonas campestris pv vesicatoria. Plant Physiol. 148, 1523-1536. https://doi.org/10.1104/pp.108.127977
- Lee, J.W., Lee, D.S., Bhoo, S.H., Jeon, J.S., Lee, Y.H., and Hahn, T.R. (2005). Transgenic Arabidopsis plants expressing Escherichia coli pyrophosphatase display both altered carbon partitioning in their source leaves and reduced photosynthetic activity. Plant Cell Rep. 24, 374-382. https://doi.org/10.1007/s00299-005-0951-y
- Li, B., Liu, H., Zhang, Y., Kang, T., Zhang, L., Tong, J., Xiao, L., and Zhang, H. (2013). Constitutive expression of cell wall invertase genes increases grain yield and starch content in maize. Plant Biotechnol. J. 11, 1080-1091. https://doi.org/10.1111/pbi.12102
- Li, N. and Li, Y. (2015). Maternal control of seed size in plants. J. Exp. Bot. 66, 1087-1097. https://doi.org/10.1093/jxb/eru549
- Li, N. and Li, Y. (2016). Signaling pathways of seed size control in plants. Curr. Opin. Plant Biol. 33, 23-32. https://doi.org/10.1016/j.pbi.2016.05.008
- Li, N., Zhang, D.S., Liu, H.S., Yin, C.S., Li, X., Liang, W., Yuan, Z., Xu, B., Chu, H.W., Wang, J., et al. (2006). The rice tapetum degeneration retardation gene is required for tapetum degradation and anther development. Plant Cell 18, 2999-3014. https://doi.org/10.1105/tpc.106.044107
- Lucca, P., Ye, X., and Potrykus, I. (2001). Effective selection and regeneration of transgenic rice plants with mannose as selective agent. Mol. Breed. 7, 43-49. https://doi.org/10.1023/A:1009661014167
- Miao, J., Guo, D., Zhang, J., Huang, Q., Qin, G., Zhang, X., Wan, J., Gu, H., and Qu, L.J. (2013). Targeted mutagenesis in rice using CRISPR-Cas system. Cell Res. 23, 1233-1236. https://doi.org/10.1038/cr.2013.123
- Mishra, B.S., Singh, M., Aggrawal, P., and Laxmi, A. (2009). Glucose and auxin signaling interaction in controlling Arabidopsis thaliana seedlings root growth and development. PLoS One 4, e4502. https://doi.org/10.1371/journal.pone.0004502
- Naito, Y., Hino, K., Bono, H., and Ui-Tei, K. (2015). CRISPRdirect: software for designing CRISPR/Cas guide RNA with reduced off-target sites. Bioinformatics 31, 1120-1123. https://doi.org/10.1093/bioinformatics/btu743
- Payyavula, R.S., Tay, K.H.C., Tsai, C.J., and Harding, S.A. (2011). The sucrose transporter family in Populus: the importance of a tonoplast PtaSUT4 to biomass and carbon partitioning. Plant J. 65, 757-770. https://doi.org/10.1111/j.1365-313X.2010.04463.x
- Peng, P., Liu, L., Fang, J., Zhao, J., Yuan, S., and Li, X. (2017). The rice TRIANGULAR HULL1 protein acts as a transcriptional repressor in regulating lateral development of spikelet. Sci. Rep. 7, 13712. https://doi.org/10.1038/s41598-017-14146-w
- Radchuk, V.V., Borisjuk, L., Sreenivasulu, N., Merx, K., Mock, H.P., Rolletschek, H., Wobus, U., and Weschke, W. (2009). Spatiotemporal profiling of starch biosynthesis and degradation in the developing barley grain. Plant Physiol. 150, 190-204. https://doi.org/10.1104/pp.108.133520
- Roitsch, T. and Gonzalez, M.C. (2004). Function and regulation of plant invertases: sweet sensations. Trends Plant Sci. 9, 606-613. https://doi.org/10.1016/j.tplants.2004.10.009
- Ruan, Y.L., Jin, Y., Yang, Y.J., Li, G.J., and Boyer, J.S. (2010). Sugar input, metabolism, and signaling mediated by invertase: roles in development, yield potential, and response to drought and heat. Mol. Plant 3, 942-955. https://doi.org/10.1093/mp/ssq044
- Sairanen, I., Novak, O., Pencik, A., Ikeda, Y., Jones, B., Sandberg, G., and Ljung, K. (2012). Soluble carbohydrates regulate auxin biosynthesis via PIF proteins in Arabidopsis. Plant Cell 24, 4907-4916. https://doi.org/10.1105/tpc.112.104794
- Sergeeva, L.I., Keurentjes, J.J.B., Bentsink, L., Vonk, J., van der Plas, L.H.W., Koornneef, M., and Vreugdenhil, D. (2006). Vacuolar invertase regulates elongation of Arabidopsis thaliana roots as revealed by QTL and mutant analysis. Proc. Natl. Acad. Sci. U. S. A. 103, 2994-2999. https://doi.org/10.1073/pnas.0511015103
- Sheen, J. (1990). Metabolic repression of transcription in higher plants. Plant Cell 2, 1027-1038. https://doi.org/10.1105/tpc.2.10.1027
- Shin, D.H., Choi, M., Kim, K., Bang, G., Cho, M., Choi, S.B., Choi, G., and Park, Y.I. (2013). HY5 regulates anthocyanin biosynthesis by inducing the transcriptional activation of the MYB75/PAP1 transcription factor in Arabidopsis. FEBS Lett. 587, 1543-1547. https://doi.org/10.1016/j.febslet.2013.03.037
- Shomura, A., Izawa, T., Ebana, K., Ebitani, T., Kanegae, H., Konishi, S., and Yano, M. (2008). Deletion in a gene associated with grain size increased yields during rice domestication. Nat. Genet. 40, 1023-1028. https://doi.org/10.1038/ng.169
- Solfanelli, C., Poggi, A., Loreti, E., Alpi, A., and Perata, P. (2006). Sucrosespecific induction of the anthocyanin biosynthetic pathway in Arabidopsis. Plant Physiol. 140, 637-646. https://doi.org/10.1104/pp.105.072579
- Song, X.J., Huang, W., Shi, M., Zhu, M.Z., and Lin, H.X. (2007). A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat. Genet. 39, 623-630. https://doi.org/10.1038/ng2014
-
Sturm, A., Sebkova, V., Lorenz, K., Hardegger, M., Lienhard, S., and Unger, C. (1995). Development- and organ-specific expression of the genes for sucrose synthase and three isoenzymes of acid
${\beta}$ -fructofuranosidase in carrot. Planta 195, 601-610. https://doi.org/10.1007/BF00195721 - Tang, X., Su, T., Han, M., Wei, L., Wang, W., Yu, Z., Xue, Y., Wei, H., Du, Y., Greiner, S., et al. (2017). Suppression of extracellular invertase inhibitor gene expression improves seed weight in soybean (Glycine max). J. Exp. Bot. 68, 469-482.
- Wang, E., Wang, J., Zhu, X., Hao, W., Wang, L., Li, Q., Zhang, L., He, W., Lu, B., Lin, H., et al. (2008). Control of rice grain-filling and yield by a gene with a potential signature of domestication. Nat. Genet. 40, 1370-1374. https://doi.org/10.1038/ng.220
- Wang, L., Lu, Q., Wen, X., and Lu, C. (2015). Enhanced sucrose loading improves rice yield by increasing grain size. Plant Physiol. 169, 2848-2862. https://doi.org/10.1104/pp.15.01170
- Wang, L. and Ruan, Y.L. (2012). New insights into roles of cell wall invertase in early seed development revealed by comprehensive spatial and temporal expression patterns of GhCWIN1 in cotton. Plant Physiol. 160, 777-787. https://doi.org/10.1104/pp.112.203893
- Wang, L. and Ruan, Y.L. (2013). Regulation of cell division and expansion by sugar and auxin signaling. Front. Plant Sci. 4, 163.
- Wang, L. and Ruan, Y.L. (2016). Critical roles of vacuolar invertase in floral organ development and male and female fertilities are revealed through characterization of GhVIN1-RNAi cotton plants. Plant Physiol. 171, 405-423. https://doi.org/10.1104/pp.16.00197
- Weichert, N., Saalbach, I., Weichert, H., Kohl, S., Erban, A., Kopka, J., Hause, B., Varshney, A., Sreenivasulu, N., Strickert, M., et al. (2010). Increasing sucrose uptake capacity of wheat grains stimulates storage protein synthesis. Plant Physiol. 152, 698-710. https://doi.org/10.1104/pp.109.150854
- Wu, X., Liu, J., Li, D., and Liu, C.M. (2016a). Rice caryopsis development I: dynamic changes in different cell layers. J. Integr. Plant Biol. 58, 772-785. https://doi.org/10.1111/jipb.12440
- Wu, X., Liu, J., Li, D., and Liu, C.M. (2016b). Rice caryopsis development II: dynamic changes in the endosperm. J. Integr. Plant Biol. 58, 786-798. https://doi.org/10.1111/jipb.12488
- Xiong, F., Yu, X.R., Zhou, L., Wang, F., and Xiong, A.S. (2013). Structural and physiological characterization during wheat pericarp development. Plant Cell Rep. 32, 1309-1320. https://doi.org/10.1007/s00299-013-1445-y
- Zrenner, R., Salanoubat, M., Willmitzer, L., and Sonnewald, U. (1995). Evidence of the crucial role of sucrose synthase for sink strength using transgenic potato plants (Solanum tuberosum L.). Plant J. 7, 97-107. https://doi.org/10.1046/j.1365-313X.1995.07010097.x
Cited by
- Vacuolar sucrose homeostasis is critical for plant development, seed properties, and night-time survival in Arabidopsis vol.71, pp.16, 2019, https://doi.org/10.1093/jxb/eraa205
- CRISPR/Cas: A powerful tool for gene function study and crop improvement vol.29, 2019, https://doi.org/10.1016/j.jare.2020.10.003
- Modification of cereal plant architecture by genome editing to improve yields vol.40, pp.6, 2019, https://doi.org/10.1007/s00299-021-02668-7
- Key Regulators of Sucrose Metabolism Identified through Comprehensive Comparative Transcriptome Analysis in Peanuts vol.22, pp.14, 2019, https://doi.org/10.3390/ijms22147266
- Thiourea and hydrogen peroxide priming improved K+ retention and source-sink relationship for mitigating salt stress in rice vol.11, pp.1, 2019, https://doi.org/10.1038/s41598-020-80419-6
- Cloning and functional analysis of soluble acid invertase 2 gene (SbSAI-2) in sorghum vol.255, pp.1, 2019, https://doi.org/10.1007/s00425-021-03772-4