DOI QR코드

DOI QR Code

The Role of Rice Vacuolar Invertase2 in Seed Size Control

  • Lee, Dae-Woo (Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University) ;
  • Lee, Sang-Kyu (Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University) ;
  • Rahman, Md Mizanor (Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University) ;
  • Kim, Yu-Jin (Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University) ;
  • Zhang, Dabing (Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University) ;
  • Jeon, Jong-Seong (Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University)
  • Received : 2019.05.27
  • Accepted : 2019.08.21
  • Published : 2019.10.31

Abstract

Sink strength optimizes sucrose import, which is fundamental to support developing seed grains and increase crop yields, including those of rice (Oryza sativa). In this regard, little is known about the function of vacuolar invertase (VIN) in controlling sink strength and thereby seed size. Here, in rice we analyzed mutants of two VINs, OsVIN1 and OsVIN2, to examine their role during seed development. In a phenotypic analysis of the T-DNA insertion mutants, only the OsVIN2 mutant osvin2-1 exhibited reduced seed size and grain weight. Scanning electron microscopy analysis revealed that the small seed grains of osvin2-1 can be attributed to a reduction in spikelet size. A significant decrease in VIN activity and hexose level in the osvin2-1 spikelets interfered with spikelet growth. In addition, significant reduction in starch and increase in sucrose, which are characteristic features of reduced turnover and flux of sucrose due to impaired sink strength, were evident in the pre-storage stage of osvin2-1 developing grains. In situ hybridization analysis found that expression of OsVIN2 was predominant in the endocarp of developing grains. A genetically complemented line with a native genomic clone of OsVIN2 rescued reduced VIN activity and seed size. Two additional mutants, osvin2-2 and osvin2-3 generated by the CRISPR/Cas9 method, exhibited phenotypes similar to those of osvin2-1 in spikelet and seed size, VIN activity, and sugar metabolites. These results clearly demonstrate an important role of OsVIN2 as sink strength modulator that is critical for the maintenance of sucrose flux into developing seed grains.

Keywords

References

  1. Andersen, M.N., Asch, F., Wu, Y., Jensen, C.R., Naested, H., Mogensen, V.O., and Koch, K.E. (2002). Soluble invertase expression is an early target of drought stress during the critical, abortion-sensitive phase of young ovary development in maize. Plant Physiol. 130, 591-604. https://doi.org/10.1104/pp.005637
  2. Barratt, D.H.P., Derbyshire, P., Findlay, K., Pike, M., Wellner, N., Lunn, J., Feil, R., Simpson, C., Maule, A.J., and Smith, A.M. (2009). Normal growth of Arabidopsis requires cytosolic invertase but not sucrose synthase. Proc. Natl. Acad. Sci. U. S. A. 106, 13124-13129. https://doi.org/10.1073/pnas.0900689106
  3. Braun, D.M., Wang, L., and Ruan, Y.L. (2014). Understanding and manipulating sucrose phloem loading, unloading, metabolism, and signalling to enhance crop yield and food security. J. Exp. Bot. 65, 1713-1735. https://doi.org/10.1093/jxb/ert416
  4. Chamont, S. (1993). Sink strength: the key for plant yield modeling. Plant Cell Environ. 16, 1033-1034. https://doi.org/10.1111/j.1365-3040.1996.tb02056.x
  5. Chang, T.G., Zhu, X.G., and Raines, C. (2017). Source-sink interaction: a century old concept under the light of modern molecular systems biology. J. Exp. Bot. 68, 4417-4431. https://doi.org/10.1093/jxb/erx002
  6. Cheng, C.L., Acedo, G.N., Cristinsin, M., and Conkling, M.A. (1992). Sucrose mimics the light induction of Arabidopsis nitrate reductase gene transcription. Proc. Natl. Acad. Sci. U. S. A. 89, 1861-1864. https://doi.org/10.1073/pnas.89.5.1861
  7. Cho, J.I., Lee, S.K., Ko, S., Kim, H.K., Jun, S.H., Lee, Y.H., Bhoo, S.H., Lee, K.W., An, G., Hahn, T.R., et al. (2005). Molecular cloning and expression analysis of the cell-wall invertase gene family in rice (Oryza sativa L.). Plant Cell Rep. 24, 225-236. https://doi.org/10.1007/s00299-004-0910-z
  8. Coleman, H.D., Yan, J., and Mansfield, S.D. (2009). Sucrose synthase affects carbon partitioning to increase cellulose production and altered cell wall ultrastructure. Proc. Natl. Acad. Sci. U. S. A. 106, 13118-13123. https://doi.org/10.1073/pnas.0900188106
  9. Cottage, A., Mott, E.K., Kempster, J.A., and Gray, J.C. (2010). The Arabidopsis plastid-signalling mutant gun1 (genomes uncoupled1) shows altered sensitivity to sucrose and abscisic acid and alterations in early seedling development. J. Exp. Bot. 61, 3773-3786. https://doi.org/10.1093/jxb/erq186
  10. Eom, J.S., Cho, J.I., Reinders, A., Lee, S.W., Yoo, Y., Tuan, P.Q., Choi, S.B., Bang, G., Park, Y.I., Cho, M.H., et al. (2011). Impaired function of the tonoplastlocalized sucrose transporter in rice, OsSUT2, limits the transport of vacuolar reserve sucrose and affects plant growth. Plant Physiol. 157, 109-119. https://doi.org/10.1104/pp.111.176982
  11. Gonzalez, M.C., Roitsch, T., and Cejudo, F.J. (2005). Circadian and developmental regulation of vacuolar invertase expression in petioles of sugar beet plants. Planta 222, 386-395. https://doi.org/10.1007/s00425-005-1542-4
  12. Hanson, J., Hanssen, M., Wiese, A., Hendriks, M.M.W.B., and Smeekens, S. (2008). The sucrose regulated transcription factor bZIP11 affects amino acid metabolism by regulating the expression of ASPARAGINE SYNTHETASE1 and PROLINE DEHYDROGENASE2. Plant J. 53, 935-949. https://doi.org/10.1111/j.1365-313X.2007.03385.x
  13. Hirose, T., Takano, M., and Terao, T. (2002). Cell wall invertase in developing rice caryopsis: molecular cloning of OsCIN1 and analysis of its expression in relation to its role in grain filling. Plant Cell Physiol. 43, 452-459. https://doi.org/10.1093/pcp/pcf055
  14. Ishimaru, T. (2005). Expression patterns of genes encoding carbohydratemetabolizing enzymes and their relationship to grain filling in rice (Oryza sativa L.): comparison of caryopses located at different positions in a panicle. Plant Cell Physiol. 46, 620-628. https://doi.org/10.1093/pcp/pci066
  15. Jain, M., Nijhawan, A., Tyagi, A.K., and Khurana, J.P. (2006). Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. Biochem. Biophys. Res. Commun. 345, 646-651. https://doi.org/10.1016/j.bbrc.2006.04.140
  16. Jeon, J.S., Lee, S., Jung, K.H., Jun, S.H., Jeong, D.H., Lee, J., Kim, C., Jang, S., Yang, K., Nam, J., et al. (2000). T-DNA insertional mutagenesis for functional genomics in rice. Plant J. 22, 561-570. https://doi.org/10.1046/j.1365-313x.2000.00767.x
  17. Jeong, D.H., An, S., Park, S., Kang, H.G., Park, G.G., Kim, S.R., Sim, J., Kim, Y.O., Kim, M.K., Kim, S.R., et al. (2006). Generation of a flanking sequencetag database for activation-tagging lines in japonica rice. Plant J. 45, 123-132. https://doi.org/10.1111/j.1365-313X.2005.02610.x
  18. Ji, X., Van den Ende, W., Schroeven, L., Clerens, S., Geuten, K., Cheng, S., and Bennett, J. (2007). The rice genome encodes two vacuolar invertases with fructan exohydrolase activity but lacks the related fructan biosynthesis genes of the Pooideae. New Phytol. 173, 50-62. https://doi.org/10.1111/j.1469-8137.2006.01896.x
  19. Ji, X., Van den Ende, W., Van Laere, A., Cheng, S., and Bennett, J. (2005). Structure, evolution, and expression of the two invertase gene families of rice. J. Mol. Evol. 60, 615-634. https://doi.org/10.1007/s00239-004-0242-1
  20. Jin, Y., Ni, D.A., and Ruan, Y.L. (2009). Posttranslational elevation of cell wall invertase activity by silencing its inhibitor in tomato delays leaf senescence and increases seed weight and fruit hexose level. Plant Cell 21, 2072-2089. https://doi.org/10.1105/tpc.108.063719
  21. Kim, J.Y., Mahe, A., Brangeon, J., and Prioul, J.L. (2000). A maize vacuolar invertase, IVR2, is induced by water stress. Organ/tissue specificity and diurnal modulation of expression. Plant Physiol. 124, 71-84. https://doi.org/10.1104/pp.124.1.71
  22. Klann, E.M., Chetelat, R.T., and Bennett, A.B. (1993). Expression of acid invertase gene controls sugar composition in tomato (Lycopersicon) fruit. Plant Physiol. 103, 863-870. https://doi.org/10.1104/pp.103.3.863
  23. Klann, E.M., Hall, B., and Bennett, A.B. (1996). Antisense acid invertase (TIV1) gene alters soluble sugar composition and size in transgenic tomato fruit. Plant Physiol. 112, 1321-1330. https://doi.org/10.1104/pp.112.3.1321
  24. Kocal, N., Sonnewald, U., and Sonnewald, S. (2008). Cell wall-bound invertase limits sucrose export and is involved in symptom development and inhibition of photosynthesis during compatible interaction between tomato and Xanthomonas campestris pv vesicatoria. Plant Physiol. 148, 1523-1536. https://doi.org/10.1104/pp.108.127977
  25. Lee, J.W., Lee, D.S., Bhoo, S.H., Jeon, J.S., Lee, Y.H., and Hahn, T.R. (2005). Transgenic Arabidopsis plants expressing Escherichia coli pyrophosphatase display both altered carbon partitioning in their source leaves and reduced photosynthetic activity. Plant Cell Rep. 24, 374-382. https://doi.org/10.1007/s00299-005-0951-y
  26. Li, B., Liu, H., Zhang, Y., Kang, T., Zhang, L., Tong, J., Xiao, L., and Zhang, H. (2013). Constitutive expression of cell wall invertase genes increases grain yield and starch content in maize. Plant Biotechnol. J. 11, 1080-1091. https://doi.org/10.1111/pbi.12102
  27. Li, N. and Li, Y. (2015). Maternal control of seed size in plants. J. Exp. Bot. 66, 1087-1097. https://doi.org/10.1093/jxb/eru549
  28. Li, N. and Li, Y. (2016). Signaling pathways of seed size control in plants. Curr. Opin. Plant Biol. 33, 23-32. https://doi.org/10.1016/j.pbi.2016.05.008
  29. Li, N., Zhang, D.S., Liu, H.S., Yin, C.S., Li, X., Liang, W., Yuan, Z., Xu, B., Chu, H.W., Wang, J., et al. (2006). The rice tapetum degeneration retardation gene is required for tapetum degradation and anther development. Plant Cell 18, 2999-3014. https://doi.org/10.1105/tpc.106.044107
  30. Lucca, P., Ye, X., and Potrykus, I. (2001). Effective selection and regeneration of transgenic rice plants with mannose as selective agent. Mol. Breed. 7, 43-49. https://doi.org/10.1023/A:1009661014167
  31. Miao, J., Guo, D., Zhang, J., Huang, Q., Qin, G., Zhang, X., Wan, J., Gu, H., and Qu, L.J. (2013). Targeted mutagenesis in rice using CRISPR-Cas system. Cell Res. 23, 1233-1236. https://doi.org/10.1038/cr.2013.123
  32. Mishra, B.S., Singh, M., Aggrawal, P., and Laxmi, A. (2009). Glucose and auxin signaling interaction in controlling Arabidopsis thaliana seedlings root growth and development. PLoS One 4, e4502. https://doi.org/10.1371/journal.pone.0004502
  33. Naito, Y., Hino, K., Bono, H., and Ui-Tei, K. (2015). CRISPRdirect: software for designing CRISPR/Cas guide RNA with reduced off-target sites. Bioinformatics 31, 1120-1123. https://doi.org/10.1093/bioinformatics/btu743
  34. Payyavula, R.S., Tay, K.H.C., Tsai, C.J., and Harding, S.A. (2011). The sucrose transporter family in Populus: the importance of a tonoplast PtaSUT4 to biomass and carbon partitioning. Plant J. 65, 757-770. https://doi.org/10.1111/j.1365-313X.2010.04463.x
  35. Peng, P., Liu, L., Fang, J., Zhao, J., Yuan, S., and Li, X. (2017). The rice TRIANGULAR HULL1 protein acts as a transcriptional repressor in regulating lateral development of spikelet. Sci. Rep. 7, 13712. https://doi.org/10.1038/s41598-017-14146-w
  36. Radchuk, V.V., Borisjuk, L., Sreenivasulu, N., Merx, K., Mock, H.P., Rolletschek, H., Wobus, U., and Weschke, W. (2009). Spatiotemporal profiling of starch biosynthesis and degradation in the developing barley grain. Plant Physiol. 150, 190-204. https://doi.org/10.1104/pp.108.133520
  37. Roitsch, T. and Gonzalez, M.C. (2004). Function and regulation of plant invertases: sweet sensations. Trends Plant Sci. 9, 606-613. https://doi.org/10.1016/j.tplants.2004.10.009
  38. Ruan, Y.L., Jin, Y., Yang, Y.J., Li, G.J., and Boyer, J.S. (2010). Sugar input, metabolism, and signaling mediated by invertase: roles in development, yield potential, and response to drought and heat. Mol. Plant 3, 942-955. https://doi.org/10.1093/mp/ssq044
  39. Sairanen, I., Novak, O., Pencik, A., Ikeda, Y., Jones, B., Sandberg, G., and Ljung, K. (2012). Soluble carbohydrates regulate auxin biosynthesis via PIF proteins in Arabidopsis. Plant Cell 24, 4907-4916. https://doi.org/10.1105/tpc.112.104794
  40. Sergeeva, L.I., Keurentjes, J.J.B., Bentsink, L., Vonk, J., van der Plas, L.H.W., Koornneef, M., and Vreugdenhil, D. (2006). Vacuolar invertase regulates elongation of Arabidopsis thaliana roots as revealed by QTL and mutant analysis. Proc. Natl. Acad. Sci. U. S. A. 103, 2994-2999. https://doi.org/10.1073/pnas.0511015103
  41. Sheen, J. (1990). Metabolic repression of transcription in higher plants. Plant Cell 2, 1027-1038. https://doi.org/10.1105/tpc.2.10.1027
  42. Shin, D.H., Choi, M., Kim, K., Bang, G., Cho, M., Choi, S.B., Choi, G., and Park, Y.I. (2013). HY5 regulates anthocyanin biosynthesis by inducing the transcriptional activation of the MYB75/PAP1 transcription factor in Arabidopsis. FEBS Lett. 587, 1543-1547. https://doi.org/10.1016/j.febslet.2013.03.037
  43. Shomura, A., Izawa, T., Ebana, K., Ebitani, T., Kanegae, H., Konishi, S., and Yano, M. (2008). Deletion in a gene associated with grain size increased yields during rice domestication. Nat. Genet. 40, 1023-1028. https://doi.org/10.1038/ng.169
  44. Solfanelli, C., Poggi, A., Loreti, E., Alpi, A., and Perata, P. (2006). Sucrosespecific induction of the anthocyanin biosynthetic pathway in Arabidopsis. Plant Physiol. 140, 637-646. https://doi.org/10.1104/pp.105.072579
  45. Song, X.J., Huang, W., Shi, M., Zhu, M.Z., and Lin, H.X. (2007). A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat. Genet. 39, 623-630. https://doi.org/10.1038/ng2014
  46. Sturm, A., Sebkova, V., Lorenz, K., Hardegger, M., Lienhard, S., and Unger, C. (1995). Development- and organ-specific expression of the genes for sucrose synthase and three isoenzymes of acid ${\beta}$-fructofuranosidase in carrot. Planta 195, 601-610. https://doi.org/10.1007/BF00195721
  47. Tang, X., Su, T., Han, M., Wei, L., Wang, W., Yu, Z., Xue, Y., Wei, H., Du, Y., Greiner, S., et al. (2017). Suppression of extracellular invertase inhibitor gene expression improves seed weight in soybean (Glycine max). J. Exp. Bot. 68, 469-482.
  48. Wang, E., Wang, J., Zhu, X., Hao, W., Wang, L., Li, Q., Zhang, L., He, W., Lu, B., Lin, H., et al. (2008). Control of rice grain-filling and yield by a gene with a potential signature of domestication. Nat. Genet. 40, 1370-1374. https://doi.org/10.1038/ng.220
  49. Wang, L., Lu, Q., Wen, X., and Lu, C. (2015). Enhanced sucrose loading improves rice yield by increasing grain size. Plant Physiol. 169, 2848-2862. https://doi.org/10.1104/pp.15.01170
  50. Wang, L. and Ruan, Y.L. (2012). New insights into roles of cell wall invertase in early seed development revealed by comprehensive spatial and temporal expression patterns of GhCWIN1 in cotton. Plant Physiol. 160, 777-787. https://doi.org/10.1104/pp.112.203893
  51. Wang, L. and Ruan, Y.L. (2013). Regulation of cell division and expansion by sugar and auxin signaling. Front. Plant Sci. 4, 163.
  52. Wang, L. and Ruan, Y.L. (2016). Critical roles of vacuolar invertase in floral organ development and male and female fertilities are revealed through characterization of GhVIN1-RNAi cotton plants. Plant Physiol. 171, 405-423. https://doi.org/10.1104/pp.16.00197
  53. Weichert, N., Saalbach, I., Weichert, H., Kohl, S., Erban, A., Kopka, J., Hause, B., Varshney, A., Sreenivasulu, N., Strickert, M., et al. (2010). Increasing sucrose uptake capacity of wheat grains stimulates storage protein synthesis. Plant Physiol. 152, 698-710. https://doi.org/10.1104/pp.109.150854
  54. Wu, X., Liu, J., Li, D., and Liu, C.M. (2016a). Rice caryopsis development I: dynamic changes in different cell layers. J. Integr. Plant Biol. 58, 772-785. https://doi.org/10.1111/jipb.12440
  55. Wu, X., Liu, J., Li, D., and Liu, C.M. (2016b). Rice caryopsis development II: dynamic changes in the endosperm. J. Integr. Plant Biol. 58, 786-798. https://doi.org/10.1111/jipb.12488
  56. Xiong, F., Yu, X.R., Zhou, L., Wang, F., and Xiong, A.S. (2013). Structural and physiological characterization during wheat pericarp development. Plant Cell Rep. 32, 1309-1320. https://doi.org/10.1007/s00299-013-1445-y
  57. Zrenner, R., Salanoubat, M., Willmitzer, L., and Sonnewald, U. (1995). Evidence of the crucial role of sucrose synthase for sink strength using transgenic potato plants (Solanum tuberosum L.). Plant J. 7, 97-107. https://doi.org/10.1046/j.1365-313X.1995.07010097.x

Cited by

  1. Vacuolar sucrose homeostasis is critical for plant development, seed properties, and night-time survival in Arabidopsis vol.71, pp.16, 2019, https://doi.org/10.1093/jxb/eraa205
  2. CRISPR/Cas: A powerful tool for gene function study and crop improvement vol.29, 2019, https://doi.org/10.1016/j.jare.2020.10.003
  3. Modification of cereal plant architecture by genome editing to improve yields vol.40, pp.6, 2019, https://doi.org/10.1007/s00299-021-02668-7
  4. Key Regulators of Sucrose Metabolism Identified through Comprehensive Comparative Transcriptome Analysis in Peanuts vol.22, pp.14, 2019, https://doi.org/10.3390/ijms22147266
  5. Thiourea and hydrogen peroxide priming improved K+ retention and source-sink relationship for mitigating salt stress in rice vol.11, pp.1, 2019, https://doi.org/10.1038/s41598-020-80419-6
  6. Cloning and functional analysis of soluble acid invertase 2 gene (SbSAI-2) in sorghum vol.255, pp.1, 2019, https://doi.org/10.1007/s00425-021-03772-4