• 제목/요약/키워드: T regulatory cell

검색결과 298건 처리시간 0.03초

Current Understanding of Cytotoxic T Lymphocyte Antigen-4 (CTLA-4) Signaling in T-Cell Biology and Disease Therapy

  • Kim, Gil-Ran;Choi, Je-Min
    • Molecules and Cells
    • /
    • 제45권8호
    • /
    • pp.513-521
    • /
    • 2022
  • Cytotoxic T lymphocyte antigen-4 (CTLA-4) is an immune checkpoint molecule that is mainly expressed on activated T cells and regulatory T (Treg) cells that inhibits T-cell activation and regulates immune homeostasis. Due to the crucial functions of CTLA-4 in T-cell biology, CTLA-4-targeted immunotherapies have been developed for autoimmune disease as well as cancers. CTLA-4 is known to compete with CD28 to interact with B7, but some studies have revealed that its downstream signaling is independent of its ligand interaction. As a signaling domain of CTLA-4, the tyrosine motif plays a role in inhibiting T-cell activation. Recently, the lysine motif has been shown to be required for the function of Treg cells, emphasizing the importance of CTLA-4 signaling. In this review, we summarize the current understanding of CTLA-4 biology and molecular signaling events and discuss strategies to target CTLA-4 signaling for immune modulation and disease therapy.

Increased Frequency of Foxp3+ Regulatory T Cells in Mice with Hepatocellular Carcinoma

  • Du, Yong;Chen, Xin;Huang, Zhi-Ming;Ye, Xiao-Hua;Niu, Qing
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권8호
    • /
    • pp.3815-3819
    • /
    • 2012
  • The CD4+CD25+ regulatory T cell (Treg) is a special kind of T cell subset. Studies have showed that Treg cells are involved in a number of physiological processes and pathologic conditions such as autoimmune diseases, transplantation tolerance and cancer. Tregs with unique capacity for immune inhibition can impair anti-tumour immunity and help tumor cells to escape from immune surveillance. The aim of our study was to investigate whether Tregs are involved in hepatocellular carcinoma (HCC). A BABL/C mouse with HCC in situ model was established to evaluate the Treg existence in carcinoma tissues and the changes of Tregs in spleen using flow cytometry and immunohistochemistry methods. Granzyme B expression in carcinoma tissues was analyzed by immunohistochemistry to investigate the tumor local immune status.The proportion of CD4+CD25+/CD4+ spleen lymphocytes of tumor bearing mice ($18.8%{\pm}1.26%$) was found to be significantly higher than that in normal mice ($9.99%{\pm}1.90%$) (P<0.01 ). Immunohistochemistry of spleen tissue also confirmed that there was an increase in Treg in tumor-bearing mice, while in carcinomas it showed Treg cells to be present in tumor infiltrating lymphocyte areas while Granzyme B was rarely observed. Anti-tumour immunity was suppressed, and this might be associated with the increase of Tregs. Our observations suggest that the CD4+CD25+Treg/CD4+ proportion in spleen lymphocytes can be a sensitive index to evaluate the change of Tregs in hepatocellular carcinoma mice and the Treg may be a promising therapeutic target for cancer.

Cytolytic T cell line CTLL - 2의 세포증식에 미치는 cytokine의 효과 (EFFECTS OF CYTOKINES ON THE CELL PROLIFERATION OF CYTOLYTIC T CELL LINE CTLL - 2)

  • 서양자;이인규;이진용;오귀옥;김형섭
    • Journal of Periodontal and Implant Science
    • /
    • 제23권3호
    • /
    • pp.454-460
    • /
    • 1993
  • Abnormalities of the T cell subsets have been detected in the immunologically mediated disease sites such as periodontal lesions which are attributable to the regulatory effect of cell differentiation and specific chemokinetic effect of various cytokines. Macrophage Inflammatory protein$(MIP)-1{\alpha}$ and gammain terferon$({\gamma}-IFN)$ serve as important immunoregulatory molecules through which growth and differentiation of specific T cell subsets are known to be negatively regulated. Murine cytolytic T cell line CTLL-2 were used to perform the [$^3H$]-thymidine incorporation test, by which we obtained more comprehensive view in regulatory actions of cytokines on the T cell subset proliferation. 1. $rMIP-{\alpha}$(200ng/ml) and $r{\gamma}-IFN$(100U/ml) appreared to suppress the proliferation rate to CTLL-2 by 74 and 86% respectively, and the suppressive action of two cytokines were synergisic. 2. Culture supernatant of anti-CD3 mAb-stimulated mouse splenocyte enhanced the proliferation rate of CTLL-2 up to 10-fold with dose-dependent manner. However, culture supernatant of unstimulated splenocyte showed only 2-fold increase in the proliferation rate. 3. CTLL-2 cell proliferation was strictly IL-2 dependent.

  • PDF

Immuno-Regulatory Activities of an Isoflavone Glycoside, 4', $6-Dimethoxylsoflavone-7-O-{\beta}-D-Glucopyranoside$ and the Crude Extract Isolated from Amorpha fruticosa LINNE

  • Kim, Jung-Hwa;Kim, Cheol-Hee;Kwon, Min-Cheol;Kim, Hyou-Sung;Lee, Kang-Yoon;Lee, Hyun-Jung;Kang, Ha-Young;Lee, Hak-Ju;Lee, Hyeon-Yong
    • 한국약용작물학회지
    • /
    • 제14권2호
    • /
    • pp.63-69
    • /
    • 2006
  • The methanolic (MeOH) extract of A. fruticosa bark, which showed immune-regulatory activities, was separated to purify an active compared by means of a multi-stage column chromatography. This resulted in the isolation and characterization of an isoflavone glycoside named 4', $6-Dimethoxyisoflavone-7-O-{\beta}-D-glucopyranoside$. Immuno-regulatory activities of the crude extract of Amorpha fruticosa LINNE bark were compared with that of an isoflavone glycoside (4', $6-dimethoxyisoflavone-7-O-{\beta}-D-glucopyranoside$). The crude methanolic extract of A. fruticosa and purified single compound showed 16% of relatively low cytotoxicity at a maximum concentration of 1.0 g/L in cultivated normal human lung cell line (HEL299). Cell growth of human T cells was increased up to 15%, 0.5 g/L of the crude extract added group. This was higher than a single compound added one. On the other hand, specific production rates of IL-6 and $TNF-{\alpha}$ from T cell were higher in the purified compound treat group ($0.82{\times}10^{-4}\;pg/cell$ and $1.08{\times}10^{-4}\;pg/cell$, respectively), compared to 0.5 g/L of the crude extract added group ($0.65{\times}10^{-4}\;pg/cell$ and $0.84{\times}10^{-4}\;pg/cell$, respectively). In addition, the growth of NK-92MI cells incubated with the crude extract was higher up to 56% over the cells grown with a single compound (0.5 g/L). In overall, the crude extract showed relatively higher immuno-regulatory activities compared with a single compound, probably due to the synergic effect given by other substances existed in the crude extract. Even though the siolated compound stimulated higher secretion of cytokines from human T cells.

갑상샘 암종을 가진 개에서 조절 T 세포의 증가 (Increased Regulatory T cells in Thyroid Adenocarcinoma in a Mixed Breed Dog)

  • 김준환;홍연정;김범석;김윤혜;박진호;정태호;박철
    • 한국임상수의학회지
    • /
    • 제30권6호
    • /
    • pp.482-485
    • /
    • 2013
  • 6년령의 개가 오른쪽 턱 밑의 종괴와 고체온증으로 전북대학교 수의과대학 동물병원에 내원하였다. 정확한 위치와 크기를 측정하기 위해 CT 촬영을 진행하였으며 3D 재구성을 실시하였다. CT 촬영 후 수술적으로 제거하였으며 제거 후 조직검사를 실시한 결과 거대세포 갑상샘 암종으로 확인되었다. 또한 본 환자의 혈액 중 조절 T 세포의 비율을 보기 위해 흐름세포측정기를 이용하여 실험한 결과 38.28%로 정상인 개(8마리 정상 비글견에서 조사한 결과 $7.66{\pm}1.65%$ (P<0.01))에서 보다 높게 나왔다. 보호자가 항암치료는 원하지 않아서 실시하지 못하였으며 수술 7일 후 다시 재발하였으며 혈액검사 결과 심한 백혈구 증가증 및 비재생성 빈혈이 나타났다. 또한 폐전이 부위로 의심되는 부위가 악화되었으며 결국 심한 빈혈과 호흡곤란으로 폐사하였다.

Mechanism of T cell exhaustion in a chronic environment

  • Jin, Hyun-Tak;Jeong, Yun-Hee;Park, Hyo-Jin;Ha, Sang-Jun
    • BMB Reports
    • /
    • 제44권4호
    • /
    • pp.217-231
    • /
    • 2011
  • T cell exhaustion develops under conditions of antigen-persistence caused by infection with various chronic pathogens, such as human immunodeficiency virus (HIV) and myco-bacterium tuberculosis (TB), or by the development of cancer. T cell exhaustion is characterized by stepwise and progressive loss of T cell function, which is probably the main reason for the failed immunological control of chronic pathogens and cancers. Recent observations have detailed some of the intrinsic and extrinsic factors that influence the severity of T cell exhaustion. Duration and magnitude of antigenic activation of T cells might be associated with up-regulation of inhibitory receptors, which is a major intrinsic factor of T cell exhaustion. Extrinsic factors might include the production of suppressive cytokines, T cell priming by either non-professional antigenpresenting cells (APCs) or tolerogenic dendritic cells (DCs), and alteration of regulatory T (Treg) cells. Further investigation of the cellular and molecular processes behind the development of T cell exhaustion can reveal therapeutic targets and strategies for the treatment of chronic infections and cancers. Here, we report the properties and the mechanisms of T cell exhaustion in a chronic environment.

Ginsenoside Rp1 Exerts Anti-inflammatory Effects via Activation of Dendritic Cells and Regulatory T Cells

  • Bae, Jin-Gyu;Koo, Ji-Hye;Kim, Soo-Chan;Park, Tae-Yoon;Kim, Mi-Yeon
    • Journal of Ginseng Research
    • /
    • 제36권4호
    • /
    • pp.375-382
    • /
    • 2012
  • Ginsenoside Rp1 (G-Rp1) is a saponin derivate that provides anti-metastatic activities through inhibition of the NF-${\kappa}B$ pathway. In this study, we examined the effects of G-Rp1 on regulatory T cell (Treg) activation. After treatment of splenocytes with G-Rp1, Tregs exhibited upregulation of IL-10 expression, and along with dendritic cells (DCs), these Tregs showed increased cell number compared to other cell populations. The effect of G-Rp1 on Treg number was augmented in the presence of lipopolysaccharide (LPS), which mimics pathological changes that occur during inflammation. However, depletion of DCs prevented the increase in Treg number in the presence of G-Rp1 and/or LPS. In addition, G-Rp1 promoted the differentiation of the memory types of $CD4^+Foxp3^+CD62L^{low}$ Tregs rather than the generation of new Tregs. In vivo experiments also demonstrated that Tregs and DCs from mice that were fed G-Rp1 for 7 d and then injected with LPS exhibited increased activation compared with those from mice that were injected with LPS alone. Expression of TGF-${\beta}$ and CTLA4 in Tregs was increased, and upregulation of IL-2 and CD80/CD86 expression by DCs affected the suppressive function of Tregs through IL-2 receptors and CTLA4. These data demonstrate that G-Rp1 exerts anti-inflammatory effects by activating Tregs in vitro and in vivo.

MiT Family Transcriptional Factors in Immune Cell Functions

  • Kim, Seongryong;Song, Hyun-Sup;Yu, Jihyun;Kim, You-Me
    • Molecules and Cells
    • /
    • 제44권5호
    • /
    • pp.342-355
    • /
    • 2021
  • The microphthalmia-associated transcription factor family (MiT family) proteins are evolutionarily conserved transcription factors that perform many essential biological functions. In mammals, the MiT family consists of MITF (microphthalmia-associated transcription factor or melanocyte-inducing transcription factor), TFEB (transcription factor EB), TFE3 (transcription factor E3), and TFEC (transcription factor EC). These transcriptional factors belong to the basic helix-loop-helix-leucine zipper (bHLH-LZ) transcription factor family and bind the E-box DNA motifs in the promoter regions of target genes to enhance transcription. The best studied functions of MiT proteins include lysosome biogenesis and autophagy induction. In addition, they modulate cellular metabolism, mitochondria dynamics, and various stress responses. The control of nuclear localization via phosphorylation and dephosphorylation serves as the primary regulatory mechanism for MiT family proteins, and several kinases and phosphatases have been identified to directly determine the transcriptional activities of MiT proteins. In different immune cell types, each MiT family member is shown to play distinct or redundant roles and we expect that there is far more to learn about their functions and regulatory mechanisms in host defense and inflammatory responses.

Tumor-derived CD4+CD25+ Tregs Inhibit the Maturation and Antigen-Presenting Function of Dendritic Cells

  • Du, Yong;Chen, Xin;Lin, Xiu-Qing;Wu, Wei;Huang, Zhi-Ming
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권7호
    • /
    • pp.2665-2669
    • /
    • 2015
  • CD4+CD25+regulatory T cells (Tregs) play a key role in regulation of immnue response and maintenance of self-tolerance. Studies have found Tregs could suppress tumor-specific T cell-mediated immune response and promote cancer progression. Depletion of Tregs can enhance antitumor immunity. Dendritic cells (DCs) are professional antigen-presenting cells and capable of activating antigen-specific immune responses, which make them ideal candidate for cancer immunotherapy. Now various DC vaccines are considered as effective treatment for cancers. The aim of this study was to evaluate variation of Tregs in BALB/C mice with hepatocellular carcinoma and investigate the interaction between tumor-derived Tregs, effector T cells (Teff) and splenic DCs. We found the percentages of Tregs/CD4+ in the peripheral blood of tumor-bearing mice were higher than in normal mice. Tumor-derived Tregs diminished the up-regulation of costimulatory molecule expression on splenic DCs, even in the presence of Teff cells and simultaneously inhibited IL-12 and $TNF-{\alpha}$ secretion by DCs.