References
- Badovinac, V. P. and Harty, J. T. (2002) CD8(+) T-cell homeostasis after infection: setting the 'curve'. Microbes Infect. 4, 441-447. https://doi.org/10.1016/S1286-4579(02)01558-7
- Kaech, S. M., Hemby, S., Kersh, E. and Ahmed, R. (2002) Molecular and functional profiling of memory CD8 T cell differentiation. Cell 111, 837-851. https://doi.org/10.1016/S0092-8674(02)01139-X
- Lechner, F., Wong, D. K., Dunbar, P. R., Chapman, R.,Chung, R. T., Dohrenwend, P., Robbins, G., Phillips, R.,Klenerman, P. and Walker, B. D. (2000) Analysis of successful immune responses in persons infected with hepatitis C virus. J. Exp. Med. 191, 1499-1512. https://doi.org/10.1084/jem.191.9.1499
- Mongkolsapaya, J., Dejnirattisai, W., Xu, X. N., Vasanawathana,S., Tangthawornchaikul, N., Chairunsri, A.,Sawasdivorn, S., Duangchinda, T., Dong, T., Rowland-Jones, S., Yenchitsomanus, P. T., McMichael, A., Malasit,P. and Screaton, G. (2003) Original antigenic sin and apoptosis in the pathogenesis of dengue hemorrhagic fever. Nat. Med. 9, 921-927. https://doi.org/10.1038/nm887
- Van Epps, H. L., Terajima, M., Mustonen, J., Arstila, T.P., Corey, E. A., Vaheri, A. and Ennis, F. A. (2002) Long-lived memory T lymphocyte responses after hantavirus infection. J. Exp. Med. 196, 579-588. https://doi.org/10.1084/jem.20011255
- Wherry, E. J. and Ahmed, R. (2004) Memory CD8 T-cell differentiation during viral infection. J. Virol. 78, 5535-5545. https://doi.org/10.1128/JVI.78.11.5535-5545.2004
- Kaech, S. M., Wherry, E. J. and Ahmed, R. (2002) Effector and memory T-cell differentiation: implications for vaccine development. Nat. Rev. Immunol. 2, 251- 262. https://doi.org/10.1038/nri778
- Schluns, K. S. and Lefrancois, L. (2003) Cytokine control of memory T-cell development and survival. Nat. Rev. Immunol. 3, 269-279. https://doi.org/10.1038/nri1052
- Klenerman, P. and Hill, A. (2005) T cells and viral persistence: lessons from diverse infections. Nat. Immunol. 6, 873-879. https://doi.org/10.1038/ni1241
- Anichini, A., Vegetti, C. and Mortarini, R. (2004) The paradox of T-cell-mediated antitumor immunity in spite of poor clinical outcome in human melanoma. Cancer Immunol. Immunother. 53, 855-864.
- den Boer, A. T., van Mierlo, G. J., Fransen, M. F., Melief,C. J., Offringa, R. and Toes, R. E. (2004) The tumoricidal activity of memory CD8+ T cells is hampered by persistent systemic antigen, but full functional capacity is regained in an antigen-free environment. J. Immunol. 172, 6074-6079. https://doi.org/10.4049/jimmunol.172.10.6074
- Zippelius, A., Batard, P., Rubio-Godoy, V., Bioley, G.,Lienard, D., Lejeune, F., Rimoldi, D., Guillaume, P.,Meidenbauer, N., Mackensen, A., Rufer, N., Lubenow,N., Speiser, D., Cerottini, J. C., Romero, P. and Pittet, M.J. (2004) Effector function of human tumor-specific CD8 T cells in melanoma lesions: a state of local functional tolerance. Cancer Res. 64, 2865-2873. https://doi.org/10.1158/0008-5472.CAN-03-3066
- Coussens, L. M. and Werb, Z. (2002) Inflammation and cancer. Nature 420, 860-867. https://doi.org/10.1038/nature01322
- Virgin, H. W., Wherry, E. J. and Ahmed, R. (2009) Redefining chronic viral infection. Cell 138, 30-50. https://doi.org/10.1016/j.cell.2009.06.036
- Zajac, A. J., Blattman, J. N., Murali-Krishna, K., Sourdive,D. J., Suresh, M., Altman, J. D. and Ahmed, R. (1998) Viral immune evasion due to persistence of activated T cells without effector function. J. Exp. Med. 188, 2205-2213. https://doi.org/10.1084/jem.188.12.2205
- Crawford, A. and Wherry, E. J. (2009) The diversity of costimulatory and inhibitory receptor pathways and the regulation of antiviral T cell responses. Curr. Opin. Immunol. 21, 179-186. https://doi.org/10.1016/j.coi.2009.01.010
- Wherry, E. J., Blattman, J. N., Murali-Krishna, K., van derMost, R. and Ahmed, R. (2003) Viral persistence alters CD8 T-cell immunodominance and tissue distribution and results in distinct stages of functional impairment. J. Virol. 77, 4911-4927. https://doi.org/10.1128/JVI.77.8.4911-4927.2003
- Wherry, E. J., Ha, S. J., Kaech, S. M., Haining, W. N.,Sarkar, S., Kalia, V., Subramaniam, S., Blattman, J. N.,Barber, D. L. and Ahmed, R. (2007) Molecular signature of CD8+ T cell exhaustion during chronic viral infection. Immunity 27, 670-684. https://doi.org/10.1016/j.immuni.2007.09.006
- Shin, H. and Wherry, E. J. (2007) CD8 T cell dysfunction during chronic viral infection. Curr. Opin. Immunol. 19, 408-415. https://doi.org/10.1016/j.coi.2007.06.004
- Shin, H., Blackburn, S. D., Blattman, J. N. and Wherry,E. J. (2007) Viral antigen and extensive division maintain virus-specific CD8 T cells during chronic infection. J. Exp. Med. 204, 941-949. https://doi.org/10.1084/jem.20061937
- Mumprecht, S., Schurch, C., Schwaller, J., Solenthaler,M. and Ochsenbein, A. F. (2009) Programmed death 1 signaling on chronic myeloid leukemia-specific T cells results in T-cell exhaustion and disease progression. Blood 114, 1528-1536. https://doi.org/10.1182/blood-2008-09-179697
- Fourcade, J., Sun, Z., Benallaoua, M., Guillaume, P.,Luescher, I. F., Sander, C., Kirkwood, J. M., Kuchroo, V.and Zarour, H. M. (2010) Upregulation of Tim-3 and PD-1 expression is associated with tumor antigen-specific CD8+ T cell dysfunction in melanoma patients. J. Exp. Med. 207, 2175-2186. https://doi.org/10.1084/jem.20100637
- Ahmadzadeh, M., Johnson, L. A., Heemskerk, B., Wunderlich,J. R., Dudley, M. E., White, D. E. and Rosenberg,S. A. (2009) Tumor antigen-specific CD8 T cells infiltrating the tumor express high levels of PD-1 and are functionally impaired. Blood 114, 1537-1544. https://doi.org/10.1182/blood-2008-12-195792
- Barber, D. L., Wherry, E. J., Masopust, D., Zhu, B.,Allison, J. P., Sharpe, A. H., Freeman, G. J. and Ahmed, R. (2006) Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 439, 682-687. https://doi.org/10.1038/nature04444
- Sharpe, A. H., Wherry, E. J., Ahmed, R. and Freeman, G.J. (2007) The function of programmed cell death 1 and its ligands in regulating autoimmunity and infection. Nat. Immunol. 8, 239-245. https://doi.org/10.1038/ni1443
- Jin, H. T., Ahmed, R. and Okazaki, T. (2010) Role of PD-1 in Regulating T-Cell Immunity. Curr. Top. Microbiol. Immunol. [Epub ahead of print].
- Ha, S. J., Mueller, S. N., Wherry, E. J., Barber, D. L.,Aubert, R. D., Sharpe, A. H., Freeman, G. J. and Ahmed, R. (2008) Enhancing therapeutic vaccination by blocking PD-1-mediated inhibitory signals during chronic infection. J. Exp. Med. 205, 543-555. https://doi.org/10.1084/jem.20071949
- Boni, C., Fisicaro, P., Valdatta, C., Amadei, B., Di Vincenzo,P., Giuberti, T., Laccabue, D., Zerbini, A., Cavalli,A., Missale, G., Bertoletti, A. and Ferrari, C. (2007) Characterization of hepatitis B virus (HBV)-specific T-cell dysfunction in chronic HBV infection. J. Virol. 81, 4215-4225. https://doi.org/10.1128/JVI.02844-06
- Day, C. L., Kaufmann, D. E., Kiepiela, P., Brown, J. A.,Moodley, E. S., Reddy, S., Mackey, E. W., Miller, J. D.,Leslie, A. J., DePierres, C., Mncube, Z., Duraiswamy, J.,Zhu, B., Eichbaum, Q., Altfeld, M., Wherry, E. J.,Coovadia, H. M., Goulder, P. J., Klenerman, P., Ahmed,R., Freeman, G. J. and Walker, B. D. (2006) PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression. Nature 443, 350-354. https://doi.org/10.1038/nature05115
- Freeman, G. J., Wherry, E. J., Ahmed, R. and Sharpe, A.H. (2006) Reinvigorating exhausted HIV-specific T cells via PD-1-PD-1 ligand blockade. J. Exp. Med. 203, 2223-2227. https://doi.org/10.1084/jem.20061800
- Petrovas, C., Casazza, J. P., Brenchley, J. M., Price, D.A., Gostick, E., Adams, W. C., Precopio, M. L., Schacker,T., Roederer, M., Douek, D. C. and Koup, R. A. (2006) PD-1 is a regulator of virus-specific CD8+ T cell survival in HIV infection. J. Exp. Med. 203, 2281-2292. https://doi.org/10.1084/jem.20061496
- Radziewicz, H., Ibegbu, C. C., Fernandez, M. L.,Workowski, K. A., Obideen, K., Wehbi, M., Hanson, H.L., Steinberg, J. P., Masopust, D., Wherry, E. J., Altman,J. D., Rouse, B. T., Freeman, G. J., Ahmed, R. andGrakoui, A. (2007) Liver-infiltrating lymphocytes in chronic human hepatitis C virus infection display an exhausted phenotype with high levels of PD-1 and low levels of CD127 expression. J. Virol. 81, 2545-2553. https://doi.org/10.1128/JVI.02021-06
- Trautmann, L., Janbazian, L., Chomont, N., Said, E. A.,Gimmig, S., Bessette, B., Boulassel, M. R., Delwart, E.,Sepulveda, H., Balderas, R. S., Routy, J. P., Haddad, E. K.and Sekaly, R. P. (2006) Upregulation of PD-1 expression on HIV-specific CD8+ T cells leads to reversible immune dysfunction. Nat. Med. 12, 1198-1202. https://doi.org/10.1038/nm1482
- Urbani, S., Amadei, B., Tola, D., Massari, M., Schivazappa,S., Missale, G. and Ferrari, C. (2006) PD-1 expression in acute hepatitis C virus (HCV) infection is associated with HCV-specific CD8 exhaustion. J. Virol. 80, 11398-11403. https://doi.org/10.1128/JVI.01177-06
- Velu, V., Titanji, K., Zhu, B., Husain, S., Pladevega, A.,Lai, L., Vanderford, T. H., Chennareddi, L., Silvestri, G.,Freeman, G. J., Ahmed, R. and Amara, R. R. (2009) Enhancing SIV-specific immunity in vivo by PD-1 blockade. Nature 458, 206-210. https://doi.org/10.1038/nature07662
- D'Souza, M., Fontenot, A. P., Mack, D. G., Lozupone,C., Dillon, S., Meditz, A., Wilson, C. C., Connick, E. andPalmer, B. E. (2007) Programmed death 1 expression on HIV-specific CD4+ T cells is driven by viral replication and associated with T cell dysfunction. J. Immunol. 179, 1979-1987. https://doi.org/10.4049/jimmunol.179.3.1979
- Golden-Mason, L., Palmer, B., Klarquist, J., Mengshol, J.A., Castelblanco, N. and Rosen, H. R. (2007) Upregulation of PD-1 expression on circulating and intrahepatic hepatitis C virus-specific CD8+ T cells associated with reversible immune dysfunction. J. Virol. 81, 9249-9258. https://doi.org/10.1128/JVI.00409-07
- Hamanishi, J., Mandai, M., Iwasaki, M., Okazaki, T.,Tanaka, Y., Yamaguchi, K., Higuchi, T., Yagi, H.,Takakura, K., Minato, N., Honjo, T. and Fujii, S. (2007) Programmed cell death 1 ligand 1 and tumor-infiltrating CD8+ T lymphocytes are prognostic factors of human ovarian cancer. Proc. Natl. Acad. Sci. U.S.A. 104, 3360-3365. https://doi.org/10.1073/pnas.0611533104
- Hino, R., Kabashima, K., Kato, Y., Yagi, H., Nakamura,M., Honjo, T., Okazaki, T. and Tokura, Y. (2010) Tumor cell expression of programmed cell death-1 ligand 1 is a prognostic factor for malignant melanoma. Cancer 116, 1757-1766. https://doi.org/10.1002/cncr.24899
- Nakanishi, J., Wada, Y., Matsumoto, K., Azuma, M.,Kikuchi, K. and Ueda, S. (2007) Overexpression of B7-H1 (PD-L1) significantly associates with tumor grade and postoperative prognosis in human urothelial cancers. Cancer Immunol. Immunother. 56, 1173-1182. https://doi.org/10.1007/s00262-006-0266-z
- Nomi, T., Sho, M., Akahori, T., Hamada, K., Kubo, A.,Kanehiro, H., Nakamura, S., Enomoto, K., Yagita, H.,Azuma, M. and Nakajima, Y. (2007) Clinical significance and therapeutic potential of the programmed death-1 ligand/programmed death-1 pathway in human pancreatic cancer. Clin. Cancer Res. 13, 2151-2157. https://doi.org/10.1158/1078-0432.CCR-06-2746
- Ohigashi, Y., Sho, M., Yamada, Y., Tsurui, Y., Hamada,K., Ikeda, N., Mizuno, T., Yoriki, R., Kashizuka, H.,Yane, K., Tsushima, F., Otsuki, N., Yagita, H., Azuma,M. and Nakajima, Y. (2005) Clinical significance of programmed death-1 ligand-1 and programmed death-1 ligand-2 expression in human esophageal cancer. Clin. Cancer Res. 11, 2947-2953. https://doi.org/10.1158/1078-0432.CCR-04-1469
- Thompson, R. H., Gillett, M. D., Cheville, J. C., Lohse,C. M., Dong, H., Webster, W. S., Krejci, K. G., Lobo, J.R., Sengupta, S., Chen, L., Zincke, H., Blute, M. L.,Strome, S. E., Leibovich, B. C. and Kwon, E. D. (2004) Costimulatory B7-H1 in renal cell carcinoma patients: Indicator of tumor aggressiveness and potential therapeutic target. Proc. Natl. Acad. Sci. U.S.A. 101, 17174-17179. https://doi.org/10.1073/pnas.0406351101
- Wu, C., Zhu, Y., Jiang, J., Zhao, J., Zhang, X. G. and Xu,N. (2006) Immunohistochemical localization of programmed death-1 ligand-1 (PD-L1) in gastric carcinoma and its clinical significance. Acta Histochem. 108, 19-24. https://doi.org/10.1016/j.acthis.2006.01.003
- Fourcade, J., Kudela, P., Sun, Z., Shen, H., Land, S. R., Lenzner, D., Guillaume, P., Luescher, I. F., Sander, C.,Ferrone, S., Kirkwood, J. M. and Zarour, H. M. (2009) PD-1 is a regulator of NY-ESO-1-specific CD8+ T cell expansion in melanoma patients. J. Immunol. 182, 5240-5249. https://doi.org/10.4049/jimmunol.0803245
- Brahmer, J. R., Drake, C. G., Wollner, I., Powderly, J. D.,Picus, J., Sharfman, W. H., Stankevich, E., Pons, A.,Salay, T. M., McMiller, T. L., Gilson, M. M., Wang, C.,Selby, M., Taube, J. M., Anders, R., Chen, L., Korman, A.J., Pardoll, D. M., Lowy, I. and Topalian, S. L. (2010) Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J. Clin. Oncol. 28, 3167-3175. https://doi.org/10.1200/JCO.2009.26.7609
- Berger, R., Rotem-Yehudar, R., Slama, G., Landes, S.,Kneller, A., Leiba, M., Koren-Michowitz, M., Shimoni, A.and Nagler, A. (2008) Phase I safety and pharmacokinetic study of CT-011, a humanized antibody interacting with PD-1, in patients with advanced hematologic malignancies. Clin. Cancer Res. 14, 3044-3051. https://doi.org/10.1158/1078-0432.CCR-07-4079
- Blackburn, S. D., Shin, H., Haining, W. N., Zou, T.,Workman, C. J., Polley, A., Betts, M. R., Freeman, G. J.,Vignali, D. A. and Wherry, E. J. (2009) Coregulation of CD8+ T cell exhaustion by multiple inhibitory receptors during chronic viral infection. Nat. Immunol. 10, 29-37. https://doi.org/10.1038/ni.1679
- Golden-Mason, L., Palmer, B. E., Kassam, N., Townshend-Bulson, L., Livingston, S., McMahon, B. J.,Castelblanco, N., Kuchroo, V., Gretch, D. R. and Rosen, H. R. (2009) Negative immune regulator Tim-3 is overexpressed on T cells in hepatitis C virus infection and its blockade rescues dysfunctional CD4+ and CD8+ T cells. J. Virol. 83, 9122-9130. https://doi.org/10.1128/JVI.00639-09
- Jin, H. T., Anderson, A. C., Tan, W. G., West, E. E., Ha,S. J., Araki, K., Freeman, G. J., Kuchroo, V. K. and Ahmed, R. (2010) Cooperation of Tim-3 and PD-1 in CD8 T-cell exhaustion during chronic viral infection. Proc. Natl. Acad. Sci. U.S.A. 107, 14733-14738. https://doi.org/10.1073/pnas.1009731107
- Jones, R. B., Ndhlovu, L. C., Barbour, J. D., Sheth, P. M.,Jha, A. R., Long, B. R., Wong, J. C., Satkunarajah, M.,Schweneker, M., Chapman, J. M., Gyenes, G., Vali, B.,Hyrcza, M. D., Yue, F. Y., Kovacs, C., Sassi, A., Loutfy,M., Halpenny, R., Persad, D., Spotts, G., Hecht, F. M.,Chun, T. W., McCune, J. M., Kaul, R., Rini, J. M., Nixon,D. F. and Ostrowski, M. A. (2008) Tim-3 expression defines a novel population of dysfunctional T cells with highly elevated frequencies in progressive HIV-1 infection. J. Exp. Med. 205, 2763-2779. https://doi.org/10.1084/jem.20081398
- Sakuishi, K., Apetoh, L., Sullivan, J. M., Blazar, B. R.,Kuchroo, V. K. and Anderson, A. C. (2010) Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J. Exp. Med. 207, 2187-2194. https://doi.org/10.1084/jem.20100643
- Shin, H., Blackburn, S. D., Intlekofer, A. M., Kao, C.,Angelosanto, J. M., Reiner, S. L. and Wherry, E. J. (2009) A role for the transcriptional repressor Blimp-1 in CD8(+) T cell exhaustion during chronic viral infection. Immunity 31, 309-320. https://doi.org/10.1016/j.immuni.2009.06.019
- Agnellini, P., Wolint, P., Rehr, M., Cahenzli, J., Karrer,U. and Oxenius, A. (2007) Impaired NFAT nuclear translocation results in split exhaustion of virus-specific CD8+ T cell functions during chronic viral infection. Proc. Natl. Acad. Sci. U.S.A. 104, 4565-4570. https://doi.org/10.1073/pnas.0610335104
- Quigley, M., Pereyra, F., Nilsson, B., Porichis, F.,Fonseca, C., Eichbaum, Q., Julg, B., Jesneck, J. L., Brosnahan,K., Imam, S., Russell, K., Toth, I., Piechocka-Trocha, A., Dolfi, D., Angelosanto, J., Crawford, A.,Shin, H., Kwon, D. S., Zupkosky, J., Francisco, L.,Freeman, G. J., Wherry, E. J., Kaufmann, D. E., Walker,B. D., Ebert, B. and Haining, W. N. (2010) Transcriptional analysis of HIV-specific CD8+ T cells shows that PD-1 inhibits T cell function by upregulating BATF. Nat. Med. 16, 1147-1151. https://doi.org/10.1038/nm.2232
- Pellegrini, M., Calzascia, T., Toe, J. G., Preston, S. P.,Lin, A. E., Elford, A. R., Shahinian, A., Lang, P. A., Lang,K. S., Morre, M., Assouline, B., Lahl, K., Sparwasser, T.,Tedder, T. F., Paik, J. H., DePinho, R. A., Basta, S.,Ohashi, P. S. and Mak, T. W. (2011) IL-7 engages multiple mechanisms to overcome chronic viral infection and limit organ pathology. Cell 144, 601-613. https://doi.org/10.1016/j.cell.2011.01.011
- Abbas, A. K. and Sharpe, A. H. (2005) Dendritic cells giveth and taketh away. Nat. Immunol. 6, 227-228. https://doi.org/10.1038/ni0305-227
- Lore, K., Sonnerborg, A., Brostrom, C., Goh, L. E.,Perrin, L., McDade, H., Stellbrink, H. J., Gazzard, B.,Weber, R., Napolitano, L. A., van Kooyk, Y. and Andersson,J. (2002) Accumulation of DC-SIGN+CD40+ dendritic cells with reduced CD80 and CD86 expression in lymphoid tissue during acute HIV-1 infection. AIDS 16, 683-692. https://doi.org/10.1097/00002030-200203290-00003
- Redpath, S., Angulo, A., Gascoigne, N. R. and Ghazal, P. (2001) Immune checkpoints in viral latency. Annu. Rev. Microbiol. 55, 531-560. https://doi.org/10.1146/annurev.micro.55.1.531
- Tortorella, D., Gewurz, B., Schust, D., Furman, M. andPloegh, H. (2000) Down-regulation of MHC class I antigen presentation by HCMV; lessons for tumor immunology. Immunol. Invest. 29, 97-100. https://doi.org/10.3109/08820130009062289
- Fuller, M. J. and Zajac, A. J. (2003) Ablation of CD8 and CD4 T cell responses by high viral loads. J. Immunol. 170, 477-486. https://doi.org/10.4049/jimmunol.170.1.477
- Moskophidis, D., Lechner, F., Pircher, H. and Zinkernagel, R. M. (1993) Virus persistence in acutely infected immunocompetent mice by exhaustion of antiviral cytotoxic effector T cells. Nature 362, 758-761. https://doi.org/10.1038/362758a0
- Mueller, S. N. and Ahmed, R. (2009) High antigen levels are the cause of T cell exhaustion during chronic viral infection. Proc. Natl. Acad. Sci. U.S.A. 106, 8623-8628. https://doi.org/10.1073/pnas.0809818106
- Schacker, T. W., Brenchley, J. M., Beilman, G. J., Reilly,C., Pambuccian, S. E., Taylor, J., Skarda, D., Larson, M.,Douek, D. C. and Haase, A. T. (2006) Lymphatic tissue fibrosis is associated with reduced numbers of naive CD4+ T cells in human immunodeficiency virus type 1 infection. Clin. Vaccine Immunol. 13, 556-560. https://doi.org/10.1128/CVI.13.5.556-560.2006
- Mueller, S. N., Matloubian, M., Clemens, D. M., Sharpe,A. H., Freeman, G. J., Gangappa, S., Larsen, C. P. and Ahmed, R. (2007) Viral targeting of fibroblastic reticular cells contributes to immunosuppression and persistence during chronic infection. Proc. Natl. Acad. Sci. U.S.A. 104, 15430-15435. https://doi.org/10.1073/pnas.0702579104
- Zhang, M., Tang, H., Guo, Z., An, H., Zhu, X., Song, W.,Guo, J., Huang, X., Chen, T., Wang, J. and Cao, X.(2004) Splenic stroma drives mature dendritic cells to differentiate into regulatory dendritic cells. Nat. Immunol. 5, 1124-1133. https://doi.org/10.1038/ni1130
- Svensson, M., Maroof, A., Ato, M. and Kaye, P. M.(2004) Stromal cells direct local differentiation of regulatory dendritic cells. Immunity 21, 805-816. https://doi.org/10.1016/j.immuni.2004.10.012
- Benedict, C. A., De Trez, C., Schneider, K., Ha, S.,Patterson, G. and Ware, C. F. (2006) Specific remodeling of splenic architecture by cytomegalovirus. PLoS Pathog. 2, e16. https://doi.org/10.1371/journal.ppat.0020016
- Donaghy, H., Pozniak, A., Gazzard, B., Qazi, N.,Gilmour, J., Gotch, F. and Patterson, S. (2001) Loss of blood CD11c(+) myeloid and CD11c(-) plasmacytoid dendritic cells in patients with HIV-1 infection correlates with HIV-1 RNA virus load. Blood 98, 2574-2576. https://doi.org/10.1182/blood.V98.8.2574
- Pacanowski, J., Kahi, S., Baillet, M., Lebon, P., Deveau,C., Goujard, C., Meyer, L., Oksenhendler, E., Sinet, M. and Hosmalin, A. (2001) Reduced blood CD123+ (lymphoid) and CD11c+ (myeloid) dendritic cell numbers in primary HIV-1 infection. Blood 98, 3016-3021. https://doi.org/10.1182/blood.V98.10.3016
- Kanto, T., Inoue, M., Miyatake, H., Sato, A., Sakakibara,M., Yakushijin, T., Oki, C., Itose, I., Hiramatsu, N.,Takehara, T., Kasahara, A. and Hayashi, N. (2004) Reduced numbers and impaired ability of myeloid and plasmacytoid dendritic cells to polarize T helper cells in chronic hepatitis C virus infection. J. Infect. Dis. 190, 1919-1926. https://doi.org/10.1086/425425
- Smed-Sorensen, A., Lore, K., Vasudevan, J., Louder, M.K., Andersson, J., Mascola, J. R., Spetz, A. L. and Koup,R. A. (2005) Differential susceptibility to human immunodeficiency virus type 1 infection of myeloid and plasmacytoid dendritic cells. J. Virol. 79, 8861-8869. https://doi.org/10.1128/JVI.79.14.8861-8869.2005
- Lore, K., Smed-Sorensen, A., Vasudevan, J., Mascola, J.R. and Koup, R. A. (2005) Myeloid and plasmacytoid dendritic cells transfer HIV-1 preferentially to antigenspecific CD4+ T cells. J. Exp. Med. 201, 2023-2033. https://doi.org/10.1084/jem.20042413
- Schmitt, N., Nugeyre, M. T., Scott-Algara, D., Cumont,M. C., Barre-Sinoussi, F., Pancino, G. and Israel, N.(2006) Differential susceptibility of human thymic dendritic cell subsets to X4 and R5 HIV-1 infection. AIDS 20, 533-542. https://doi.org/10.1097/01.aids.0000210607.63138.bc
- Cameron, P. U., Handley, A. J., Baylis, D. C., Solomon,A. E., Bernard, N., Purcell, D. F. and Lewin, S. R. (2007) Preferential infection of dendritic cells during human immunodeficiency virus type 1 infection of blood leukocytes. J. Virol. 81, 2297-2306. https://doi.org/10.1128/JVI.01795-06
- Groot, F., van Capel, T. M., Kapsenberg, M. L.,Berkhout, B. and de Jong, E. C. (2006) Opposing roles of blood myeloid and plasmacytoid dendritic cells in HIV-1 infection of T cells: transmission facilitation versus replication inhibition. Blood 108, 1957-1964. https://doi.org/10.1182/blood-2006-03-010918
- Cavaleiro, R., Baptista, A. P., Soares, R. S., Tendeiro, R.,Foxall, R. B., Gomes, P., Victorino, R. M. and Sousa, A.E. (2009) Major depletion of plasmacytoid dendritic cells in HIV-2 infection, an attenuated form of HIV disease. PLoS Pathog. 5, e1000667. https://doi.org/10.1371/journal.ppat.1000667
- Blackburn, S. D., Crawford, A., Shin, H., Polley, A.,Freeman, G. J. and Wherry, E. J. (2010) Tissue-specific differences in PD-1 and PD-L1 expression during chronic viral infection: implications for CD8 T-cell exhaustion. J. Virol. 84, 2078-2089. https://doi.org/10.1128/JVI.01579-09
- Sevilla, N., Kunz, S., Holz, A., Lewicki, H., Homann, D.,Yamada, H., Campbell, K. P., de La Torre, J. C. andOldstone, M. B. (2000) Immunosuppression and resultant viral persistence by specific viral targeting of dendritic cells. J. Exp. Med. 192, 1249-1260. https://doi.org/10.1084/jem.192.9.1249
- Sevilla, N., Kunz, S., McGavern, D. and Oldstone, M. B.(2003) Infection of dendritic cells by lymphocytic choriomeningitis virus. Curr. Top. Microbiol. Immunol. 276, 125-144.
- Homann, D., McGavern, D. B. and Oldstone, M. B.(2004) Visualizing the viral burden: phenotypic and functional alterations of T cells and APCs during persistent infection. J. Immunol. 172, 6239-6250. https://doi.org/10.4049/jimmunol.172.10.6239
- Sevilla, N., McGavern, D. B., Teng, C., Kunz, S. andOldstone, M. B. (2004) Viral targeting of hematopoietic progenitors and inhibition of DC maturation as a dual strategy for immune subversion. J. Clin. Invest. 113, 737-745. https://doi.org/10.1172/JCI20243
- Wang, X., Zhang, Z., Zhang, S., Fu, J., Yao, J., Jiao, Y.,Wu, H. and Wang, F. S. (2008) B7-H1 up-regulation impairs myeloid DC and correlates with disease progression in chronic HIV-1 infection. Eur. J. Immunol. 38, 3226-3236. https://doi.org/10.1002/eji.200838285
- Rodrigue-Gervais, I. G., Rigsby, H., Jouan, L., Sauve, D.,Sekaly, R. P., Willems, B. and Lamarre, D. (2010)Dendritic cell inhibition is connected to exhaustion of CD8+ T cell polyfunctionality during chronic hepatitis C virus infection. J. Immunol. 184, 3134-3144. https://doi.org/10.4049/jimmunol.0902522
- Rodrigue-Gervais, I. G., Rigsby, H., Jouan, L., Sauve, D.,Sekaly, R. P., Willems, B. and Lamarre, D. (2010) Dendritic cell inhibition is connected to exhaustion of CD8+ T cell polyfunctionality during chronic hepatitis C virus infection. J. Immunol. 184, 3134-3144. https://doi.org/10.4049/jimmunol.0902522
- Chen, L., Zhang, Z., Chen, W., Li, Y., Shi, M., Zhang, J.,Wang, S. and Wang, F. S. (2007) B7-H1 up-regulation on myeloid dendritic cells significantly suppresses T cell immune function in patients with chronic hepatitis B. J. Immunol. 178, 6634-6641. https://doi.org/10.4049/jimmunol.178.10.6634
- Averill, L., Lee, W. M. and Karandikar, N. J. (2007)Differential dysfunction in dendritic cell subsets during chronic HCV infection. Clin. Immunol. 123, 40-49. https://doi.org/10.1016/j.clim.2006.12.001
- Probst, H. C., McCoy, K., Okazaki, T., Honjo, T. andvan den Broek, M. (2005) Resting dendritic cells induce peripheral CD8+ T cell tolerance through PD-1 and CTLA-4. Nat. Immunol. 6, 280-286.
- Curiel, T. J., Coukos, G., Zou, L. H., Alvarez, X., Cheng,P., Mottram, P., Evdemon-Hogan, M., Conejo-Garcia, J.R., Zhang, L., Burow, M., Zhu, Y., Wei, S., Kryczek, I.,Daniel, B., Gordon, A., Myers, L., Lackner, A., Disis, M.L., Knutson, K. L., Chen, L. P. and Zou, W. P. (2004) Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat. Med. 10, 942-949. https://doi.org/10.1038/nm1093
- Manches, O., Munn, D., Fallahi, A., Lifson, J., Chaperot,L., Plumas, J. and Bhardwaj, N. (2008) HIV-activated human plasmacytoid DCs induce Tregs through an indoleamine 2,3-dioxygenase-dependent mechanism. J. Clin. Invest. 118, 3431-3439. https://doi.org/10.1172/JCI34823
- Dolganiuc, A., Paek, E., Kodys, K., Thomas, J. andSzabo, G. (2008) Myeloid dendritic cells of patients with chronic HCV infection induce proliferation of regulatory T lymphocytes. Gastroenterology 135, 2119-2127. https://doi.org/10.1053/j.gastro.2008.07.082
- Sharma, M. D., Baban, B., Chandler, P., Hou, D. Y.,Singh, N., Yagita, H., Azuma, M., Blazar, B. R., Mellor,A. L. and Munn, D. H. (2007) Plasmacytoid dendritic cells from mouse tumor draining lymph nodes directly activate mature Tregs via indoleamine 2,3-dioxygenase. J. Clin. Invest. 117, 2570-2582. https://doi.org/10.1172/JCI31911
- Asselin-Paturel, C. and Trinchieri, G. (2005) Production of type I interferons: plasmacytoid dendritic cells and beyond. J. Exp. Med. 202, 461-465. https://doi.org/10.1084/jem.20051395
- McKenna, K., Beignon, A. S. and Bhardwaj, N. (2005) Plasmacytoid dendritic cells: linking innate and adaptive immunity. J. Virol. 79, 17-27. https://doi.org/10.1128/JVI.79.1.17-27.2005
- Liu, Y. J. (2005) IPC: professional type 1 interferon-producing cells and plasmacytoid dendritic cell precursors. Annu. Rev. Immunol. 23, 275-306. https://doi.org/10.1146/annurev.immunol.23.021704.115633
- Zuniga, E. I., Liou, L. Y., Mack, L., Mendoza, M. andOldstone, M. B. (2008) Persistent virus infection inhibits type I interferon production by plasmacytoid dendritic cells to facilitate opportunistic infections. Cell Host. Microbe 4, 374-386. https://doi.org/10.1016/j.chom.2008.08.016
- Schlender, J., Hornung, V., Finke, S., Gunthner-Biller,M., Marozin, S., Brzozka, K., Moghim, S., Endres, S.,Hartmann, G. and Conzelmann, K. K. (2005) Inhibition of toll-like receptor 7- and 9-mediated alpha/beta interferon production in human plasmacytoid dendritic cells by respiratory syncytial virus and measles virus. J. Virol. 79, 5507-5515. https://doi.org/10.1128/JVI.79.9.5507-5515.2005
- Seo, Y. J. and Hahm, B. (2010) Type I interferon modulates the battle of host immune system against viruses. Adv. Appl. Microbiol. 73, 83-101. https://doi.org/10.1016/S0065-2164(10)73004-5
- Hori, S., Nomura, T. and Sakaguchi, S. (2003) Control of regulatory T cell development by the transcription factor Foxp.3. Science 299, 1057-1061. https://doi.org/10.1126/science.1079490
- Sakaguchi, S., Sakaguchi, N., Asano, M., Itoh, M. andToda, M. (1995) Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J. Immunol. 155, 1151-1164.
- Feuerer, M., Hill, J. A., Mathis, D. and Benoist, C. (2009)Foxp3(+) regulatory T cells: differentiation, specification, subphenotypes. Nat. Immunol. 10, 689-695. https://doi.org/10.1038/ni.1760
- Sakaguchi, S., Wing, K., Onishi, Y., Prieto-Martin, P. andYamaguchi, T. (2009) Regulatory T cells: how do they suppress immune responses? Int. Immunol. 21, 1105-1111. https://doi.org/10.1093/intimm/dxp095
- Vignali, D. A., Collison, L. W. and Workman, C. J.(2008) How regulatory T cells work. Nat. Rev. Immunol. 8, 523-532. https://doi.org/10.1038/nri2343
- Collison, L. W., Workman, C. J., Kuo, T. T., Boyd, K.,Wang, Y., Vignali, K. M., Cross, R., Sehy, D., Blumberg,R. S. and Vignali, D. A. (2007) The inhibitory cytokine IL-35 contributes to regulatory T-cell function. Nature 450, 566-569. https://doi.org/10.1038/nature06306
- Gondek, D. C., Lu, L. F., Quezada, S. A., Sakaguchi, S.and Noelle, R. J. (2005) Cutting edge: contact-mediated suppression by CD4+CD25+ regulatory cells involves a granzyme B-dependent, perforin-independent mechanism. J. Immunol. 174, 1783-1786. https://doi.org/10.4049/jimmunol.174.4.1783
- Grossman, W. J., Verbsky, J. W., Tollefsen, B. L.,Kemper, C., Atkinson, J. P. and Ley, T. J. (2004) Differential expression of granzymes A and B in human cytotoxic lymphocyte subsets and T regulatory cells. Blood 104, 2840-2848. https://doi.org/10.1182/blood-2004-03-0859
- de la Rosa, M., Rutz, S., Dorninger, H. and Scheffold, A.(2004) Interleukin-2 is essential for CD4+CD25+ regulatory T cell function. Eur. J. Immunol. 34, 2480-2488. https://doi.org/10.1002/eji.200425274
- Thornton, A. M. and Shevach, E. M. (1998) CD4+ CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J. Exp. Med. 188, 287-296. https://doi.org/10.1084/jem.188.2.287
- Barboza, L., Salmen, S., Goncalves, L., Colmenares, M.,Peterson, D., Montes, H., Cartagirone, R., Gutierrez, M.D. and Berrueta, L. (2007) Antigen-induced regulatory T cells in HBV chronically infected patients. Virology 368, 41-49. https://doi.org/10.1016/j.virol.2007.06.030
- Annacker, O., Asseman, C., Read, S. and Powrie, F.(2003) Interleukin-10 in the regulation of T cell-induced colitis. J. Autoimmun. 20, 277-279. https://doi.org/10.1016/S0896-8411(03)00045-3
- Dieckmann, D., Plottner, H., Berchtold, S., Berger, T.and Schuler, G. (2001) Ex vivo isolation and characterization of CD4(+)CD25(+) T cells with regulatory properties from human blood. J. Exp. Med. 193, 1303-1310. https://doi.org/10.1084/jem.193.11.1303
- Hawrylowicz, C. M. and O'Garra, A. (2005) Potential role of interleukin-10-secreting regulatory T cells in allergy and asthma. Nat. Rev. Immunol. 5, 271-283. https://doi.org/10.1038/nri1589
- Jonuleit, H., Schmitt, E., Stassen, M., Tuettenberg, A.,Knop, J. and Enk, A. H. (2001) Identification and functional characterization of human CD4(+)CD25(+) T cells with regulatory properties isolated from peripheral blood. J. Exp. Med. 193, 1285-1294. https://doi.org/10.1084/jem.193.11.1285
- Chen, W., Jin, W., Hardegen, N., Lei, K. J., Li, L.,Marinos, N., McGrady, G. and Wahl, S. M. (2003) Conversion of peripheral CD4+CD25- naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J. Exp. Med. 198, 1875-1886. https://doi.org/10.1084/jem.20030152
- Lohr, J., Knoechel, B. and Abbas, A. K. (2006) Regulatory T cells in the periphery. Immunol. Rev. 212, 149-162. https://doi.org/10.1111/j.0105-2896.2006.00414.x
- Grainger, J. R., Smith, K. A., Hewitson, J. P., McSorley,H. J., Harcus, Y., Filbey, K. J., Finney, C. A., Greenwood,E. J., Knox, D. P., Wilson, M. S., Belkaid, Y., Rudensky,A. Y. and Maizels, R. M. (2010) Helminth secretions induce de novo T cell Foxp3 expression and regulatory function through the TGF-beta pathway. J. Exp. Med. 207, 2331-2341. https://doi.org/10.1084/jem.20101074
- Layland, L. E., Mages, J., Loddenkemper, C., Hoerauf, A.,Wagner, H., Lang, R. and da Costa, C. U. (2010) Pronounced phenotype in activated regulatory T cells during a chronic helminth infection. J. Immunol. 184, 713-724. https://doi.org/10.4049/jimmunol.0901435
- Johanns, T. M., Ertelt, J. M., Rowe, J. H. and Way, S. S.(2010) Regulatory T Cell Suppressive Potency Dictates the Balance between Bacterial Proliferation and Clearance during Persistent Salmonella Infection. PLoS Pathog. 6, e1001043. https://doi.org/10.1371/journal.ppat.1001043
- Majlessi, L., Lo-Man, R. and Leclerc, C. (2008) Regulatory B and T cells in infections. Microbes Infect. 10, 1030-1035. https://doi.org/10.1016/j.micinf.2008.07.017
- Shafiani, S., Tucker-Heard, G., Kariyone, A., Takatsu, K.and Urdahl, K. B. (2010) Pathogen-specific regulatory T cells delay the arrival of effector T cells in the lung during early tuberculosis. J. Exp. Med. 207, 1409-1420. https://doi.org/10.1084/jem.20091885
- Xu, D. P., Fu, J. L., Jin, L., Zhang, H., Zhou, C. B., Zou,Z. S., Zhao, J. M., Zhang, B., Shi, M., Ding, X. L., Tang,Z. R., Fu, Y. X. and Wang, F. S. (2006) Circulating and liver resident CD4(+)CD25(+) regulatory T cells actively influence the antiviral immune response and disease progression in patients with hepatitis B-1. J. Immunol. 177, 739-747. https://doi.org/10.4049/jimmunol.177.1.739
- Franzese, O., Kennedy, P. T., Gehring, A. J., Gotto, J.,Williams, R., Maini, M. K. and Bertoletti, A. (2005) Modulation of the CD8+-T-cell response by CD4+ CD25+ regulatory T cells in patients with hepatitis B virus infection. J. Virol. 79, 3322-3328. https://doi.org/10.1128/JVI.79.6.3322-3328.2005
- Accapezzato, D., Francavilla, V., Paroli, M., Casciaro,M., Chircu, L. V., Cividini, A., Abrignani, S., Mondelli, M. U. and Barnaba, V. (2004) Hepatic expansion of a virus-specific regulatory CD8(+) T cell population in chronic hepatitis C virus infection. J. Clin. Invest. 113, 963-972. https://doi.org/10.1172/JCI200420515
- Nakamoto, N., Cho, H., Shaked, A., Olthoff, K., Valiga,M. E., Kaminski, M., Gostick, E., Price, D. A., Freeman,G. J., Wherry, E. J. and Chang, K. M. (2009) Synergistic reversal of intrahepatic HCV-specific CD8 T cell exhaustion by combined PD-1/CTLA-4 blockade. PLoS Pathog. 5, e1000313. https://doi.org/10.1371/journal.ppat.1000313
- Boettler, T., Spangenberg, H. C., Neumann-Haefelin, C.,Panther, E., Urbani, S., Ferrari, C., Blum, H. E., vonWeizsacker, F. and Thimme, R. (2005) T cells with a CD4+CD25+ regulatory phenotype suppress in vitro proliferation of virus-specific CD8+ T cells during chronic hepatitis C virus infection. J. Virol. 79, 7860-7867. https://doi.org/10.1128/JVI.79.12.7860-7867.2005
- MacDonald, A. J., Duffy, M., Brady, M. T., McKiernan,S., Hall, W., Hegarty, J., Curry, M. and Mills, K. H.(2002) CD4 T helper type 1 and regulatory T cells induced against the same epitopes on the core protein in hepatitis C virus-infected persons. J. Infect. Dis. 185, 720-727. https://doi.org/10.1086/339340
- Ebinuma, H., Nakamoto, N., Li, Y., Price, D. A., Gostick,E., Levine, B. L., Tobias, J., Kwok, W. W. and Chang, K.M. (2008) Identification and in vitro expansion of functional antigen-specific CD25+ FoxP3+ regulatory T cells in hepatitis C virus infection. J. Virol. 82, 5043-5053. https://doi.org/10.1128/JVI.01548-07
- Bi, X., Suzuki, Y., Gatanaga, H. and Oka, S. (2009) High frequency and proliferation of CD4+ FOXP3+ Treg in HIV-1-infected patients with low CD4 counts. Eur. J. Immunol. 39, 301-309. https://doi.org/10.1002/eji.200838667
- Nilsson, J., Boasso, A., Velilla, P. A., Zhang, R., Vaccari,M., Franchini, G., Shearer, G. M., Andersson, J. andChougnet, C. (2006) HIV-1-driven regulatory T-cell accumulation in lymphoid tissues is associated with disease progression in HIV/AIDS. Blood 108, 3808-3817. https://doi.org/10.1182/blood-2006-05-021576
- Kinter, A., McNally, J., Riggin, L., Jackson, R., Roby, G.and Fauci, A. S. (2007) Suppression of HIV-specific T cell activity by lymph node CD25+ regulatory T cells from HIV-infected individuals. Proc. Natl. Acad. Sci. U.S.A. 104, 3390-3395. https://doi.org/10.1073/pnas.0611423104
- Trandem, K., Anghelina, D., Zhao, J. X. and Perlman, S.(2010) Regulatory T Cells Inhibit T Cell Proliferation and Decrease Demyelination in Mice Chronically Infected with a Coronavirus. J. Immunol. 184, 4391-4400. https://doi.org/10.4049/jimmunol.0903918
- Dietze, K. K., Zelinskyy, G., Gibbert, K., Schimmer, S.,Francois, S., Myers, L., Sparwasser, T., Hasenkrug, K. J.and Dittmer, U. (2011) Transient depletion of regulatory T cells in transgenic mice reactivates virus-specific CD8+ T cells and reduces chronic retroviral set points. Proc. Natl. Acad. Sci. U.S.A. 108, 2420-2425. https://doi.org/10.1073/pnas.1015148108
- Dittmer, U., He, H., Messer, R. J., Schimmer, S.,Olbrich, A. R., Ohlen, C., Greenberg, P. D., Stromnes, I.M., Iwashiro, M., Sakaguchi, S., Evans, L. H., Peterson,K. E., Yang, G. and Hasenkrug, K. J. (2004) Functional impairment of CD8(+) T cells by regulatory T cells during persistent retroviral infection. Immunity 20, 293-303. https://doi.org/10.1016/S1074-7613(04)00054-8
- Myers, L., Messer, R. J., Carmody, A. B. and Hasenkrug,K. J. (2009) Tissue-Specific Abundance of Regulatory T Cells Correlates with CD8(+) T Cell Dysfunction and Chronic Retrovirus Loads. J. Immunol. 183, 1636-1643. https://doi.org/10.4049/jimmunol.0900350
- Robertson, S. J., Messer, R. J., Carmody, A. B. and Hasenkrug, K. J. (2006) In vitro suppression of CD8+ T cell function by Friend virus-induced regulatory T cells. J. Immunol. 176, 3342-3349. https://doi.org/10.4049/jimmunol.176.6.3342
- Zelinskyy, G., Kraft, A. R., Schimmer, S., Arndt, T. andDittmer, U. (2006) Kinetics of CD8+ effector T cell responses and induced CD4+ regulatory T cell responses during Friend retrovirus infection. Eur. J. Immunol. 36, 2658-2670. https://doi.org/10.1002/eji.200636059
- Punkosdy, G. A., Blain, M., Glass, D. D., Lozano, M. M.,O'Mara, L., Dudley, J. P., Ahmed, R. and Shevach, E. M.(2011) Regulatory T-cell expansion during chronic viral infection is dependent on endogenous retroviral superantigens. Proc. Natl. Acad. Sci. U.S.A. 108, 3677-3682. https://doi.org/10.1073/pnas.1100213108
- Liyanage, U. K., Moore, T. T., Joo, H. G., Tanaka, Y.,Herrmann, V., Doherty, G., Drebin, J. A., Strasberg, S.M., Eberlein, T. J., Goedegebuure, P. S. and Linehan, D.C. (2002) Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma. J. Immunol. 169, 2756-2761. https://doi.org/10.4049/jimmunol.169.5.2756
- Ormandy, L. A., Hillemann, T., Wedemeyer, H., Manns,M. P., Greten, T. F. and Korangy, F. (2005) Increased populations of regulatory T cells in peripheral blood of patients with hepatocellular carcinoma. Cancer Res. 65, 2457-2464. https://doi.org/10.1158/0008-5472.CAN-04-3232
- Unitt, E., Rushbrook, S. M., Marshall, A., Davies, S.,Gibbs, P., Morris, L. S., Coleman, N. and Alexander, G.J. (2005) Compromised lymphocytes infiltrate hepatocellular carcinoma: the role of T-regulatory cells. Hepatology 41, 722-730. https://doi.org/10.1002/hep.20644
- Viguier, M., Lemaitre, F., Verola, O., Cho, M. S., Gorochov,G., Dubertret, L., Bachelez, H., Kourilsky, P. andFerradini, L. (2004) Foxp3 expressing CD4+CD25(high) regulatory T cells are overrepresented in human metastatic melanoma lymph nodes and inhibit the function of infiltrating T cells. J. Immunol. 173, 1444-1453. https://doi.org/10.4049/jimmunol.173.2.1444
- Wang, H. Y., Lee, D. A., Peng, G., Guo, Z., Li, Y., Kiniwa, Y., Shevach, E. M. and Wang, R. F. (2004) Tumorspecific human CD4+ regulatory T cells and their ligands: implications for immunotherapy. Immunity 20, 107-118. https://doi.org/10.1016/S1074-7613(03)00359-5
- Wang, H. Y. and Wang, R. F. (2007) Regulatory T cells and cancer. Curr. Opin. Immunol. 19, 217-223. https://doi.org/10.1016/j.coi.2007.02.004
- Woo, E. Y., Chu, C. S., Goletz, T. J., Schlienger, K., Yeh,H., Coukos, G., Rubin, S. C., Kaiser, L. R. and June, C.H. (2001) Regulatory CD4(+)CD25(+) T cells in tumors from patients with early-stage non-small cell lung cancer and late-stage ovarian cancer. Cancer Res. 61, 4766-4772.
- Woo, E. Y., Yeh, H., Chu, C. S., Schleinger, K., Carroll,R. G., Riley, J. L., Kaiser, L. R. and June, C. H. (2002)Cutting edge: Regulatory T cells from lung cancer patients directly inhibit autologous T cell proliferation. J. Immunol. 168, 4272-4276. https://doi.org/10.4049/jimmunol.168.9.4272
- Zou, W. (2006) Regulatory T cells, tumour immunity and immunotherapy. Nat. Rev. Immunol. 6, 295-307. https://doi.org/10.1038/nri1806
- Peggs, K. S., Quezada, S. A., Chambers, C. A., Korman,A. J. and Allison, J. P. (2009) Blockade of CTLA-4 on both effector and regulatory T cell compartments contributes to the antitumor activity of anti-CTLA-4 antibodies. J. Exp. Med. 206, 1717-1725. https://doi.org/10.1084/jem.20082492
- Camisaschi, C., Casati, C., Rini, F., Perego, M., DeFilippo, A., Rini, F., Parmiani, G., Belli, F., Rivoltini, L.and Castelli, C. (2010) LAG-3 expression defines a subset of CD4(+)CD25(high)Foxp3(+) regulatory T Cells that are expanded at tumor sites. J. Immunol. 184, 6545- 6551. https://doi.org/10.4049/jimmunol.0903879
- Krupnick, A. S., Gelman, A. E., Barchet, W., Richardson,S., Kreisel, F. H., Turka, L. A., Colonna, M., Patterson, G.A. and Kreisel, D. (2005) Murine vascular endothelium activates and induces the generation of allogeneic CD4+25+Foxp3+ regulatory T cells. J. Immunol. 175, 6265-6270. https://doi.org/10.4049/jimmunol.175.10.6265
- Lu, L., Zhou, X., Wang, J., Zheng, S. G. and Horwitz, D.A. (2010) Characterization of protective human CD4 CD25 FOXP3 regulatory T cells generated with IL-2, TGF-beta and retinoic acid. PLoS One 5, e15150. https://doi.org/10.1371/journal.pone.0015150
- Francisco, L. M., Salinas, V. H., Brown, K. E., Vanguri,V. K., Freeman, G. J., Kuchroo, V. K. and Sharpe, A. H.(2009) PD-L1 regulates the development, maintenance, and function of induced regulatory T cells. J. Exp. Med. 206, 3015-3029. https://doi.org/10.1084/jem.20090847
- Wang, W., Lau, R., Yu, D., Zhu, W., Korman, A. and Weber, J. (2009) PD1 blockade reverses the suppression of melanoma antigen-specific CTL by CD4+ CD25(Hi) regulatory T cells. Int. Immunol. 21, 1065-1077. https://doi.org/10.1093/intimm/dxp072
- Curran, M. A. and Allison, J. P. (2009) Tumor vaccines expressing flt3 ligand synergize with ctla-4 blockade to reject preimplanted tumors. Cancer Res. 69, 7747- 7755. https://doi.org/10.1158/0008-5472.CAN-08-3289
- Fong, L., Kwek, S. S., O'Brien, S., Kavanagh, B., McNeel,D. G., Weinberg, V., Lin, A. M., Rosenberg, J., Ryan, C.J., Rini, B. I. and Small, E. J. (2009) Potentiating endogenous antitumor immunity to prostate cancer through combination immunotherapy with CTLA4 blockade and GM-CSF. Cancer Res. 69, 609-615. https://doi.org/10.1158/0008-5472.CAN-08-3529
- Klages, K., Mayer, C. T., Lahl, K., Loddenkemper, C.,Teng, M. W., Ngiow, S. F., Smyth, M. J., Hamann, A.,Huehn, J. and Sparwasser, T. (2010) Selective depletion of Foxp3+ regulatory T cells improves effective therapeutic vaccination against established melanoma. Cancer Res. 70, 7788-7799. https://doi.org/10.1158/0008-5472.CAN-10-1736
- Mitsui, J., Nishikawa, H., Muraoka, D., Wang, L.,Noguchi, T., Sato, E., Kondo, S., Allison, J. P., Sakaguchi,S., Old, L. J., Kato, T. and Shiku, H. (2010) Two distinct mechanisms of augmented antitumor activity by modulation of immunostimulatory/inhibitory signals. Clin. Cancer Res. 16, 2781-2791. https://doi.org/10.1158/1078-0432.CCR-09-3243
- Tuve, S., Chen, B. M., Liu, Y., Cheng, T. L., Toure, P.,Sow, P. S., Feng, Q., Kiviat, N., Strauss, R., Ni, S., Li, Z.Y., Roffler, S. R. and Lieber, A. (2007) Combination of tumor site-located CTL-associated antigen-4 blockade and systemic regulatory T-cell depletion induces tumor- destructive immune responses. Cancer Res. 67, 5929-5939. https://doi.org/10.1158/0008-5472.CAN-06-4296
- Moore, K. W., de Waal Malefyt, R., Coffman, R. L. andO'Garra, A. (2001) Interleukin-10 and the interleukin-10 receptor. Annu. Rev. Immunol. 19, 683-765.
- Pestka, S., Krause, C. D., Sarkar, D., Walter, M. R., Shi,Y. and Fisher, P. B. (2004) Interleukin-10 and related cytokines and receptors. Annu. Rev. Immunol. 22, 929-979. https://doi.org/10.1146/annurev.immunol.22.012703.104622
- Brockman, M. A., Kwon, D. S., Tighe, D. P., Pavlik, D.F., Rosato, P. C., Sela, J., Porichis, F., Le Gall, S.,Waring, M. T., Moss, K., Jessen, H., Pereyra, F.,Kavanagh, D. G., Walker, B. D. and Kaufmann, D. E.(2009) IL-10 is up-regulated in multiple cell types during viremic HIV infection and reversibly inhibits virus-specific T cells. Blood 114, 346-356. https://doi.org/10.1182/blood-2008-12-191296
- Brooks, D. G., Trifilo, M. J., Edelmann, K. H., Teyton, L.,McGavern, D. B. and Oldstone, M. B. (2006) Interleukin- 10 determines viral clearance or persistence in vivo. Nat. Med. 12, 1301-1309. https://doi.org/10.1038/nm1492
- Clerici, M., Wynn, T. A., Berzofsky, J. A., Blatt, S. P.,Hendrix, C. W., Sher, A., Coffman, R. L. and Shearer, G.M. (1994) Role of interleukin-10 in T helper cell dysfunction in asymptomatic individuals infected with the human immunodeficiency virus. J. Clin. Invest. 93, 768-775. https://doi.org/10.1172/JCI117031
- Ejrnaes, M., Filippi, C. M., Martinic, M. M., Ling, E. M.,Togher, L. M., Crotty, S. and von Herrath, M. G. (2006) Resolution of a chronic viral infection after interleukin- 10 receptor blockade. J. Exp. Med. 203, 2461-2472. https://doi.org/10.1084/jem.20061462
- Hyodo, N., Nakamura, I. and Imawari, M. (2004) Hepatitis B core antigen stimulates interleukin-10 secretion by both T cells and monocytes from peripheral blood of patients with chronic hepatitis B virus infection. Clin. Exp. Immunol. 135, 462-466. https://doi.org/10.1111/j.1365-2249.2003.02376.x
- Kaplan, D. E., Ikeda, F., Li, Y., Nakamoto, N., Ganesan,S., Valiga, M. E., Nunes, F. A., Rajender Reddy, K. andChang, K. M. (2008) Peripheral virus-specific T-cell interleukin- 10 responses develop early in acute hepatitis C infection and become dominant in chronic hepatitis. J. Hepatol. 48, 903-913. https://doi.org/10.1016/j.jhep.2008.01.030
- Maris, C. H., Chappell, C. P. and Jacob, J. (2007) Interleukin-10 plays an early role in generating virus-specific T cell anergy. BMC Immunol. 8, 8. https://doi.org/10.1186/1471-2172-8-8
- Ohga, S., Nomura, A., Takada, H., Tanaka, T., Furuno, K., Takahata, Y., Kinukawa, N., Fukushima, N., Imai, S.and Hara, T. (2004) Dominant expression of interleukin-10 and transforming growth factor-beta genes in activated T-cells of chronic active Epstein-Barr virus infection. J. Med. Virol. 74, 449-458. https://doi.org/10.1002/jmv.20197
- Alatrakchi, N., Graham, C. S., van der Vliet, H. J.,Sherman, K. E., Exley, M. A. and Koziel, M. J. (2007) Hepatitis C virus (HCV)-specific CD8+ cells produce transforming growth factor beta that can suppress HCVspecific T-cell responses. J. Virol. 81, 5882-5892. https://doi.org/10.1128/JVI.02202-06
- Li, M. O., Sanjabi, S. and Flavell, R. A. (2006) Transforming growth factor-beta controls development, homeostasis, and tolerance of T cells by regulatory T cell-dependent and -independent mechanisms. Immunity 25, 455-471. https://doi.org/10.1016/j.immuni.2006.07.011
- Gorelik, L. and Flavell, R. A. (2002) Transforming growth factor-beta in T-cell biology. Nat. Rev. Immunol. 2, 46-53. https://doi.org/10.1038/nri704
- Li, M. O. and Flavell, R. A. (2008) TGF-beta: a master of all T cell trades. Cell 134, 392-404. https://doi.org/10.1016/j.cell.2008.07.025
- Tinoco, R., Alcalde, V., Yang, Y., Sauer, K. and Zuniga,E. I. (2009) Cell-intrinsic transforming growth factor-beta signaling mediates virus-specific CD8+ T cell deletion and viral persistence in vivo. Immunity 31, 145-157. https://doi.org/10.1016/j.immuni.2009.06.015
- Whiteside, T. L. (2010) Immune responses to malignancies. J. Allergy. Clin. Immunol. 125, S272-283. https://doi.org/10.1016/j.jaci.2009.09.045
- Kruger-Krasagakes, S., Krasagakis, K., Garbe, C., Schmitt,E., Huls, C., Blankenstein, T. and Diamantstein, T. (1994) Expression of interleukin 10 in human melanoma. Br. J. Cancer 70, 1182-1185. https://doi.org/10.1038/bjc.1994.469
- Steinbrink, K., Jonuleit, H., Muller, G., Schuler, G., Knop,J. and Enk, A. H. (1999) Interleukin-10-treated human dendritic cells induce a melanoma-antigen-specific anergy in CD8(+) T cells resulting in a failure to lyse tumor cells. Blood 93, 1634-1642.
- Qin, Z., Noffz, G., Mohaupt, M. and Blankenstein, T.(1997) Interleukin-10 prevents dendritic cell accumulation and vaccination with granulocyte-macrophage colony-stimulating factor gene-modified tumor cells. J. Immunol. 159, 770-776.
- Gorelik, L. and Flavell, R. A. (2001) Immune-mediated eradication of tumors through the blockade of transforming growth factor-beta signaling in T cells. Nat. Med. 7, 1118-1122. https://doi.org/10.1038/nm1001-1118
- Gajewski, T. F., Meng, Y., Blank, C., Brown, I., Kacha,A., Kline, J. and Harlin, H. (2006) Immune resistance orchestrated by the tumor microenvironment. Immunol. Rev. 213, 131-145. https://doi.org/10.1111/j.1600-065X.2006.00442.x
Cited by
- Modulation of regulatory T-cell activity in combination with interleukin-12 increases hepatic tolerogenicity in woodchucks with chronic hepatitis B vol.56, pp.2, 2012, https://doi.org/10.1002/hep.25667
- Control of regulatory T cells is necessary for vaccine-like effects of antiviral immunotherapy by monoclonal antibodies vol.121, pp.7, 2013, https://doi.org/10.1182/blood-2012-06-432153
- Impairment of T Cell Function in Parasitic Infections vol.8, pp.2, 2014, https://doi.org/10.1371/journal.pntd.0002567
- Increased proportions of functionally impaired regulatory T cell subsets in systemic sclerosis 2017, https://doi.org/10.1016/j.clim.2017.05.013
- The changing immune system in sepsis vol.5, pp.1, 2014, https://doi.org/10.4161/viru.26516
- Increased Frequency of CD49b/LAG-3+Type 1 Regulatory T Cells in HIV-Infected Individuals vol.31, pp.12, 2015, https://doi.org/10.1089/aid.2014.0356
- A Parameter for IL-10 and TGF-ß Mediated Regulation of HIV-1 Specific T Cell Activation Provides Novel Information and Relates to Progression Markers vol.9, pp.1, 2014, https://doi.org/10.1371/journal.pone.0085604
- T-cell exhaustion in allograft rejection and tolerance vol.20, pp.1, 2015, https://doi.org/10.1097/MOT.0000000000000153
- Enhancing immunogenicity and cross-reactivity of HIV-1 antigens by in vivo targeting to dendritic cells vol.7, pp.10, 2012, https://doi.org/10.2217/nnm.12.131
- Salmonella impairs CD8 T cell response through PD-1: PD-L axis vol.220, pp.12, 2015, https://doi.org/10.1016/j.imbio.2015.07.005
- Salmonella induces PD-L1 expression in B cells vol.167, pp.2, 2015, https://doi.org/10.1016/j.imlet.2015.08.004
- Immunological function of Langerhans cells in HIV infection vol.87, pp.2, 2017, https://doi.org/10.1016/j.jdermsci.2017.03.015
- c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38 MAPK) are involved in Mycobacterium tuberculosis-induced expression of Leukotactin-1 vol.45, pp.10, 2012, https://doi.org/10.5483/BMBRep.2012.45.10.120
- Revisiting Immune-Based Therapies for Aggressive Follicular Cell–Derived Thyroid Cancers vol.23, pp.5, 2013, https://doi.org/10.1089/thy.2012.0566
- Negative Regulation of Type I IFN Expression by OASL1 Permits Chronic Viral Infection and CD8+ T-Cell Exhaustion vol.9, pp.7, 2013, https://doi.org/10.1371/journal.ppat.1003478
- Contribution of HIV infection to mortality among cancer patients in Uganda vol.27, pp.18, 2013, https://doi.org/10.1097/01.aids.0000433236.55937.cb
- Enhancing T Cell Immune Responses by B Cell-based Therapeutic Vaccine Against Chronic Virus Infection vol.14, pp.4, 2014, https://doi.org/10.4110/in.2014.14.4.207
- CD8+ T cells of chronic HCV-infected patients express multiple negative immune checkpoints following stimulation with HCV peptides vol.313, 2017, https://doi.org/10.1016/j.cellimm.2016.12.002
- The dynamics of T cells during persistentStaphylococcus aureusinfection: from antigen-reactivity toin vivoanergy vol.3, pp.11, 2011, https://doi.org/10.1002/emmm.201100173
- In vitro T-cell profile induced by BCG Moreau in healthy Brazilian volunteers vol.11, pp.2, 2015, https://doi.org/10.4161/21645515.2014.970954
- Cytokine production and dysregulation in HIV pathogenesis: Lessons for development of therapeutics and vaccines vol.23, pp.4-5, 2012, https://doi.org/10.1016/j.cytogfr.2012.05.005
- Clinically feasible approaches to potentiating cancer cell-based immunotherapies vol.11, pp.4, 2015, https://doi.org/10.1080/21645515.2015.1009814
- Regulation of immunity during visceral Leishmania infection vol.9, pp.1, 2016, https://doi.org/10.1186/s13071-016-1412-x
- Frequency and functional characterization of exhausted CD8+ T cells in chronic lymphocytic leukemia vol.98, pp.6, 2017, https://doi.org/10.1111/ejh.12880
- Tumor-infiltrating regulatory T cells delineated by upregulation of PD-1 and inhibitory receptors vol.278, pp.1-2, 2012, https://doi.org/10.1016/j.cellimm.2012.07.001
- Differentiation of Antigen-Specific T Cells with Limited Functional Capacity during Mycobacterium tuberculosis Infection vol.82, pp.1, 2013, https://doi.org/10.1128/IAI.00480-13
- Purging Exhausted Virus-Specific CD8 T Cell Phenotypes by Somatic Cell Reprogramming vol.33, pp.S1, 2017, https://doi.org/10.1089/aid.2017.0161
- T cells and cytokines in systemic sclerosis pp.1040-8711, 2018, https://doi.org/10.1097/BOR.0000000000000553
- Molecular signatures of T-cell inhibition in HIV-1 infection vol.10, pp.1, 2013, https://doi.org/10.1186/1742-4690-10-31