• 제목/요약/키워드: Szego kernel

검색결과 16건 처리시간 0.015초

ORTHONORMAL BASIS FOR THE BERGMAN SPACE

  • Chung, Young-Bok;Na, Heui-Geong
    • 호남수학학술지
    • /
    • 제36권4호
    • /
    • pp.777-786
    • /
    • 2014
  • We construct an orthonormal basis for the Bergman space associated to a simply connected domain. We use the or-thonormal basis for the Hardy space consisting of the Szegő kernel and the Riemann mapping function and rewrite their area integrals in terms of arc length integrals using the complex Green's identity. And we make a note about the matrix of a Toeplitz operator with respect to the orthonormal basis constructed in the paper.

Double zeros of the szego kernel

  • Lee, Moo-Hyun
    • 대한수학회지
    • /
    • 제31권3호
    • /
    • pp.457-466
    • /
    • 1994
  • When we study complex analysis, we often encounter multi-valued functions. Provably the best known example would be $\sqrt{z}$, which has a singularity at the oritgin. In general, let $\Omega_1 and \Omega_2$ be domains in C, and let $\Gamma$ be a subvariety of $\Omega_1 \times \Omega_2$.

  • PDF

SPECIAL ORTHONORMAL BASIS FOR L2 FUNCTIONS ON THE UNIT CIRCLE

  • Chung, Young-Bok
    • 대한수학회보
    • /
    • 제54권6호
    • /
    • pp.2013-2027
    • /
    • 2017
  • We compute explicitly the matrices represented by Toeplitz operators on the Hardy space over the unit circle with respect to a special orthonormal basis constructed by author in terms of their symbols. And we also find a necessary condition for the matrix generated by the product of two Toeplitz operators with respect to the basis to be a Toeplitz matrix by a direct calculation and we finally solve commuting problems of two Toeplitz operators in terms of symbols. This is a generalization of the classical results obtained regarding to the orthonormal basis consisting of the monomials.

SZEGÖ PROJECTIONS FOR HARDY SPACES IN QUATERNIONIC CLIFFORD ANALYSIS

  • He, Fuli;Huang, Song;Ku, Min
    • 대한수학회보
    • /
    • 제59권5호
    • /
    • pp.1215-1235
    • /
    • 2022
  • In this paper we study Szegö kernel projections for Hardy spaces in quaternionic Clifford analysis. At first we introduce the matrix Szegö projection operator for the Hardy space of quaternionic Hermitean monogenic functions by the characterization of the matrix Hilbert transform in the quaternionic Clifford analysis. Then we establish the Kerzman-Stein formula which closely connects the matrix Szegö projection operator with the Hardy projection operator onto the Hardy space, and we get the matrix Szegö projection operator in terms of the Hardy projection operator and its adjoint. At last, we construct the explicit matrix Szegö kernel function for the Hardy space on the sphere as an example, and get the solution to a Diriclet boundary value problem for matrix functions.