References
-
S. Bell, Mapping problems in complex analysis and the
$\bar{\partial}$ -problem, Bull. Amer. Math. Soc. 22 (1990), 233-259. https://doi.org/10.1090/S0273-0979-1990-15879-3 - S. Bell, Solving the Dirichlet problem in the plane by means of the Cauchy integral, Indiana Univ. Math. J. 39(4) (1990), 1355-1371. https://doi.org/10.1512/iumj.1990.39.39060
- Steve Bell, The Szego projection and the classical objects of potential theory in the plane, Duke Math. J. 64(1) (1991), 1-26. https://doi.org/10.1215/S0012-7094-91-06401-X
- Steven R. Bell, Complexity of the classical kernel functions of potential theory, Indiana Univ. Math. J. 44(4) (1995), 1337-1369. MR1386771 (97g:30009)
- Steven R. Bell, Ahlfors maps, the double of a domain, and complexity in potential theory and conformal mapping, J. Anal. Math. 78 (1999), 329-344. MR1714417 (2000m:30012) https://doi.org/10.1007/BF02791140
- Arlen Brown and P. R. Halmos, Algebraic properties of Toeplitz operators, J. Reine Angew. Math. 213 (1963/1964), 89-102. MR0160136 (28 #3350)
- Y.-B. Chung, An expression of the Bergman kernel function in terms of the Szego kernel, J. Math. Pures Appl. 75 (1996), 1-7.
- Y.-B. Chung, Classication of toeplitz operators on hardy spaces of bounded do-mains in the plane, in submission (2014).
- P. R. Garabedian, Schwarz's lemma and the Szeg}o kernel function, Trans. Amer. Math. Soc. 67 (1949), 1-35.