Abstract
We prove three convex hull theorems on triangles and circles. Given a triangle ${\triangle}$ and a point p, let ${\triangle}^{\prime}$ be the triangle each of whose vertices is the intersection of the orthogonal line from p to an extended edge of ${\triangle}$. Let ${\triangle}^{{\prime}{\prime}}$ be the triangle whose vertices are the centers of three circles, each passing through p and two other vertices of ${\triangle}$. The first theorem characterizes when $p{\in}{\triangle}$ via a distance duality. The triangle algorithm in [1] utilizes a general version of this theorem to solve the convex hull membership problem in any dimension. The second theorem proves $p{\in}{\triangle}$ if and only if $p{\in}{\triangle}^{\prime}$. These are used to prove the third: Suppose p be does not lie on any extended edge of ${\triangle}$. Then $p{\in}{\triangle}$ if and only if $p{\in}{\triangle}^{{\prime{\prime}}$.