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THE MATRIX REPRESENTATION OF A COMPOSITION

OPERATOR ON THE HARDY SPACE

Young-Bok Chung

Abstract. We formulate the matrix representation of a composition op-

erator on the Hardy space of the unit disc with the symbol which is a
Riemann map of the unit disc, with respect to a special orthonormal

basis.

1. Introduction

Given a set X and a function ϕ : X → X, the composition operator Cϕ

on a Banach space H on X with symbol ϕ is defined by Cϕ(f) = f ◦ ϕ for
f ∈ H. One of important research areas related to composition operators is
how the properties of the operator relates to those of the symbol. On the other
hand, when the Banach space H is a Hilbert space, the composition operator
is heavily dependent on the matrix representation of the operator with respect
to orthonormal bases for the function space. However, except for very simple
cases, computation of the matrix of an composition operator in an infinite di-
mensional Hilbert space is very complicated and difficult, so it has rarely been
formulated so far. Suppose now that the base set is the unit disc U in the com-
plex plane and the function space is the Hardy space H2(bU). In this category
the composition operator Cϕ with a holomorphic self map ϕ on U becomes a
bounded operator on H2(bU). In particular, when ϕ is a Riemann map which
maps the unit disc into itself, it characterizes automorphisms up to rotations
and the associated composition operator becomes complex symmetric and vice
versa with certain conditions. See [2] and [6] for references. So, from this point
of view, it is very important to formulate the matrix of the composition op-
erator with the symbol of the Riemann map. In this paper, we use a special
orthonormal basis for the Hardy space which is a generalization of monomi-
als zn to compute the matrix representation of the composition operator with
respect to the basis when the symbol is a Riemann self map of the unit disc.
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2. Some preliminaries

Throughout the paper, we denote by U the unit disc in the complex plane
and we fix a point a in U , unless otherwise specified. Let L2(bU) be the space
of square integrable functions on the boundary bU of the unit disc U with the
usual inner product 〈u, v〉 =

∫
bU
uv ds, where ds is the differential element of

arc length on bU . And let H2(bU) be the classical Hardy space which is the
space of holomorphic functions on U with L2-boundary values in bU .

For a holomorphic self map ϕ of U , the composition operator Cϕ with the
symbol ϕ is defined by Cϕ(v) = v ◦ϕ for v ∈ H2(bU). It is well known that Cϕ

is a bounded linear operator on the Hardy space H2(bU). See [5] for details.
The properties of the operator Cϕ depends heavily on the symbol ϕ. In this
paper, from now on, it is assumed that the symbol ϕ is the Riemann map

fa(z) =
z − a
1− az

.

The reason is that fa is the only function that characterizes the automorphisms
of the unit disk except for rotations. The reason more important than this is
that it is the only symbol that makes Cfa a complex symmetric operator under
suitable conditions. See [2] for this matter.

For a positive integer m, we define the function vm by

vm(z) =

√
1− |a|2√

2π

(z − a)m−1

(1− az)m

which is holomorphic in a neighborhood of U . It is well known that the class
of vm, m = 1, 2, 3, . . ., forms an orthonormal basis for the Hardy space h2(bU).
See [1] for general cases. The author also proved that the set {vm |m =
0,±1,±2, . . .} forms an orthonormal basis for L2(bU). See [3] and [4] for details.

Now we would like to compute the matrix representation [Cfa ] of the com-
position operator Cfa on the Hardy space with respect to the orthonormal
basis {vm |m = 1, 2, . . .}. Observe that since the basis is orthonormal, for pos-
itive integers l and m, the (l,m)-th entry of the matrix [Cfa ] is obtained by
[Cfa ]lm = 〈Cfa(vm), vl〉. Before keeping on, we lists several properties for easy
computation whose proofs are all trivial. Suppose that z is on the boundary of
the unit disc. Then the following identities hold.(

1− az
z − a

)
=

z − a
1− az

.(1) (
1

z − a

)
=

z

1− az
.(2) (

1

1− az

)
=

z

z − a
.(3)

z ds = −i dz.(4)
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We are ready to compute the entry [Cfa ]lm.

[Cfa ]lm = 〈Cfa(vm), vl〉 = 〈vm ◦ fa, vl〉

=
1− |a|2

2π

∫
bU

[
(fm−1a ◦ fa)(z)

]( 1

1− az
◦ fa(z)

)
fa(z)l−1

(
1

1− az

)
dsz.(5)

Observe that

fa ◦ fa(z) =
−2a+ (1 + |a|2)z

1 + |a|2 − 2az
.

It thus follows from (1) and (3) that the identity (5) is equal to

1− |a|2

2π

∫
bU

(fm−1)(z)
1− az

1 + |a|2 − 2az

(
1− az
z − a

)l−1
z

z − a
dsz,

where f(z) = −2a+(1+|a|2)z
1+|a|2−2az . And then by (4), the above identity equals

1− |a|2

2πi

∫
bU

(fm−1)(z)
(1− az)l

1 + |a|2 − 2az

1

(z − a)l
dz.

Finally, by residue theorem we have proved the following proposition.

Proposition 2.1. The matrix [Cfa ] of the composition operator Cfa on the
Hardy space H2(bU) with respect to the orthonormal basis {vm |m = 1, 2, . . .}
has (l,m)-th entry

[Cfa ]lm =
1− |a|2

(l − 1)!

dl−1

dzl−1

[
fm−1(z)

1

1 + |a|2 − 2az
(1− az)l

]∣∣∣∣
z=a

,(6)

where f(z) = −2a+(1+|a|2)z
1+|a|2−2az .

3. Necessary lemmas

In order to get our final formula for the value of the matrix [Cfa ], we consider
separately all derivatives of the functions inside of the bracket in the formula
(6) in this section. Let

f(z) =
−2a+ (1 + |a|2)z

1 + |a|2 − 2az
.

Lemma 3.1. f (0)(a) = −a.

Proof.

f (0)(a) =
−2a+ (1 + |a|2)a

1 + |a|2 − 2|a|2
=
−a+ a|a|2

1− |a|2
= −a. �

Lemma 3.2. f (1)(a) = 1.

Proof. Since
f (1)(z) = (1− |a|2)2(1 + |a|2 − 2az)−2,

we have
f (1)(a) = (1− |a|2)2(1 + |a|2 − 2|a|2)−2 = 1. �
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Lemma 3.3. For a positive integer k,

f (k)(a) = k! 2k−1 ak−1(1− |a|2)−k+1.

Proof. For k = 1, by Lemma 3.2, the above formula holds. Since f (2)(z) =
(1 − |a|2)2(−2)(1 + |a|2 − 2az)−3(−2a), it is easy to see from mathematical
induction on the order of derivative that

(7) f (k)(z) = (−2)(−3)(−4) · · · (−k)(1− |a|2)2(1 + |a|2 − 2az)−k−1(−2a)k−1

which proves the statement of the lemma. �

Remark 3.4. It thus follows from Lemmas 3.1, 3.2, 3.3 that for a nonnegative
integer k,

(8) f (k)(a) = δk0 (−a) + χN(k)k! 2k−1 ak−1(1− |a|2)−k+1,

where δji is the Kronecker delta defined by δji = 1 for i = j, δji = 0 for i 6= j and
χN(k) is the characteristic function defined by χN(k) = 1 for k ∈ N, χN(k) = 0
for k /∈ N.

We would like to compute the value of

(fm−1)(k)(a) for integers m and k with m ≥ 1 and k ≥ 0.

Notice from Lemma 3.1 that

(fm−1)(0)(a) = (−a)m−1.

We use Leibniz product rule for higher derivatives of an arbitrary number
of factors to obtain

(fm−1)(k)
∣∣∣
z=a

=
∑

j1+j2+···+jm−1=k

(
k

j1, j2, . . . , jm−1

)
f (j1)f (j2) · · · f (jm−1)

∣∣∣
z=a

.(9)

Here indices ji run over all nonnegative integers. In order to compute the values
of each term in the summation more effectively, we consider the n-tuples in the
summation by partitioning according to the number of coordinates which are
zeros. Let A denote the set of the (m− 1)-tuples (j1, j2, . . . , jm−1) for which ji
are nonnegative integers satisfying j1+j2+· · ·+jm−1 = k and let Aj denote the
subset of A whose elements have only j zero coordinates for j = 0, 1, . . . ,m−1.
If j = (j1, j2, . . . , jm−1) ∈ A0, i.e., for each i, ji 6= 0, then each term in the
summation of (9) can be from Lemmas 3.2 and 3.3 written as(

k

j1, j2, . . . , jm−1

)
f (j1)f (j2) · · · f (jm−1)

∣∣∣
z=a

=

(
k

j1, j2, . . . , jm−1

)
(j1!j2! · · · jm−1!)(2j1+j2+···+jm−1−m+1)

· (aj1+j2+···+jm−1−m+1)(1− |a|2)−(j1+j2+···+jm−1)+m−1
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= k!2k−m+1ak−m+1(1− |a|2)−k+m−1,

which does not depend on indices j1, . . . , jm−1. On the other hand, since each
j ∈ A0 is a solution of the equation j1 + j2 + · · · + jm−1 = k with ji ≥ 1, the
set A0 has exactly (

k − 1

k −m+ 1

)
·
(
m− 1

0

)
elements. Here the reason this product is multiplied by the latter

(
m−1
0

)
is

because the positions j1, j2, . . . , jm−1 has no rooms for the zero. By selecting
elements of A0 from A, we have the identity∑

j∈A0

(
k

j1, j2, . . . , jm−1

)
f (j1)f (j2) · · · f (jm−1)

∣∣∣
z=a

=

(
k − 1

k −m+ 1

)
·
(
m− 1

0

)
k!2k−m+1ak−m+1(1− |a|2)−k+m−1.

Next suppose that j = (j1, j2, . . . , jm−1) belongs to A1 with ji = 0 for some
i = 1, . . . ,m−1. Then by Lemmas 3.1, 3.2 and 3.3 each term in the summation
of (9) is equal to(

k

j1, j2, . . . , jm−1

)
f (j1)f (j2) · · · f (jm−1)

=

(
k

j1, j2, . . . , ji−1, 0, ji+1, . . . , jm−1

)
f (0)f (j1)f (j2) · · · f (ji−1)f (ji+1) · · · f (jm−1)

=

(
k

j1, j2, . . . , ji−1, 0, ji+1, . . . , jm−1

)
(−a)(j1!j2! · · · ji−1!ji+1! · · · jm−1!)

· (2j1+j2+···+ji−1+ji+1+···+jm−1−m+2)

· (aj1+j2+···+ji−1+ji+1+···+jm−1−m+2)

· (1− |a|2)−(j1+j2+···+ji−1+ji+1+···+jm−1)+m−2

= k!(−a)2k−m+2ak−m+2(1− |a|2)−k+m−2,

which does not depend on j1, . . . , jm−1. Notice that each j ∈ A1 with ji = 0 is
a solution of the equation j1 + j2 + · · ·+ ji−1 + ji+1 · · ·+ jm−1 = k with jp ≥ 1

for p 6= i and there are
(
m−1
1

)
cases for selecting ji = 0 and hence the set A1

has exactly (
k − 1

k −m+ 2

)
·
(
m− 1

1

)
elements. It thus follows that the sum of all terms from (m − 1)-tuples of A1

equals ∑
j∈A1

(
k

j1, j2, . . . , jm−1

)
f (j1)f (j2) · · · f (jm−1)
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=

(
k − 1

k −m+ 2

)
·
(
m− 1

1

)
k!(−a)2k−m+2ak−m+2(1− |a|2)−k+m−2.

Continuing this process through the subset Am−2, we obtain∑
j∈Am−2

(
k

j1, j2, . . . , jm−1

)
f (j1)f (j2) · · · f (jm−1)

=

(
k − 1

k − 1

)
·
(
m− 1

m− 2

)
k!(−a)m−22kak(1− |a|2)−k+1.

By collecting all sums computed in the summation from A0, A1, . . . , Am−2

like
m−2∑
i=0

∑
j∈Ai

(
k

j1, j2, . . . , jm−1

)
f (j1)f (j2) · · · f (jm−1)

∣∣∣
z=a

,

we get the final value (fm−1)(k)(a) for k ≥ 1.

Lemma 3.5. For positive integers k and m,

(fm−1)(k)
∣∣∣
z=a

= k!

m−2∑
i=0

(
k − 1

k −m+ 1 + i

)
·
(
m− 1

i

)
(−a)i2k−m+1+i ak−m+1+i(10)

· (1− |a|2)−k+m−1−i.

Next we need computation of the second factor of the formula (6).

Lemma 3.6. Define

h(z) = (1 + |a|2 − 2az)−1, z ∈ U.
Then for a nonnegative integer k,

h(k)(a) = k! 2k ak(1− |a|2)−k−1.

Proof. For k = 0, it is obvious. Since h(1)(z) = (−1)(1+|a|2−2az)−2(−2a) and
h(2)(z) = (−1)(−2)(1+|a|2−2az)−3(−2a)2, it is easy to see from mathematical
induction on the order of derivative that

(11) h(k)(z) = (−1)(−2) · · · (−k)(1− |a|2)2(1 + |a|2 − 2az)−k−1(−2a)k,

which proves Lemma 3.6. �

Finally we consider the last factor of (6).

Lemma 3.7. For a positive integer l, define

g
l
(z) = (1− az)l, z ∈ U.

Then for a nonnegative integer k,

g(k)
l

(a) = (−1)k
l!

(l − k)!
ak(1− |a|2)l−k.
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Proof. For k = 0, it is obvious. Since g(1)
l

(z) = l(1− az)l−1(−a) and g(2)
l

(z) =

l(l − 1)(1− az)l−2(−a)2, it is easy to see from mathematical induction on the
order of derivative that

(12) g(k)
l

(z) = l(l − 1) · · · (l − k + 1)(1− az)l−k(−a)k,

which proves Lemma 3.7. �

We remark here that the term containing n! in summation is regarded as
non-existent, that is, the term is not added when n! appears with n < 0.

4. Computation of the matrix of a composition operator

In this main section, we would like to compute the matrix representation
of the composition operator Cfa on the Hardy space H2(bU) with symbol, the
Riemann map fa(z) = (z − a)/(1− az) on the unit disc U with respect to the
special orthonormal basis {vm |m = 1, 2, . . .} defined by

vm(z) =

√
1− |a|2

2π

(z − a)m−1

(1− az)m

for a given fixed point a in U . From the identity (6), the entry of the matrix
[Cfa ] is written as

[Cfa ]lm =
1− |a|2

(l − 1)!

dl−1

dzl−1
[
fm−1(z)h(z)gl(z)

]∣∣∣∣
z=a

,(13)

where

f(z) =
−2a+ (1 + |a|2)z

1 + |a|2 − 2az
, h(z) = (1 + |a|2 − 2az)−1, g

l
(z) = (1− az)l.

To begin, we need to consider the first column [Cfa ]1 of the matrix [Cfa ]
because it does not contain the function f . The (l, 1)-th entry of [Cfa ] is given
by

[Cfa ]l1 =
1− |a|2

(l − 1)!

dl−1

dzl−1
(hgl)

∣∣∣∣
z=a

=
1− |a|2

(l − 1)!

l−1∑
j=0

(
l − 1

j, l − 1− j

)
h(j)g

(l−1−j)
l

∣∣∣
z=a

=
1− |a|2

(l − 1)!

l−1∑
j=0

(
l − 1

j, l − 1− j

)
2j j! aj(1− |a|)−j−1

· (−1)l−1−j
l!

(j + 1)!
al−1−j(1− |a|2)j+1

= (1− |a|2)l!

 l−1∑
j=0

(−1)l−1−j2j

(l − 1− j)!(j + 1)!

 al−1.
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Here we used Lemmas 3.6 and 3.7.
The second column of the matrix is given by

[Cfa ]l2 =
1− |a|2

(l − 1)!

dl−1

dzl−1
(fhgl)

∣∣∣∣
z=a

=
1− |a|2

(l − 1)!

∑
j1+j2+j3=l−1

(
l − 1

j1, j2, j3

)
f (j1)h(j2)g

(j3)
l

∣∣∣
z=a

.

We divide the sum into two parts, one for j1 = 0 and the other for j1 ≥ 1.
Then the above identity yields

1− |a|2

(l − 1)!

[ ∑
j2+j3=l−1

(
l − 1

0, j2, j3

)
(−a)2j2 j2! aj2(1− |a|2)−j2−1

· (−1)j3
l!

(l − j3)!
aj3(1− |a|2)l−j3

+
1− |a|2

(l − 1)!

∑
j1+j2+j3=l−1

j1 6=0

(
l − 1

j1, j2, j3

)
j1!2j1−1aj1−1(1− |a|2)−j1+1

· 2j2j2!aj2(1− |a|2)−j2−1(−1)j3
l!

(l − j3)!
aj3(1− |a|2)l−j3

]
.

Now apply the identity j2+j3 = l−1 for the first sum of the above expression
and replace the index j2 by a new index j for convenience. Use the identity
j1 + j2 + j3 = l − 1 to the second sum. It then follows that the above value is
equal to

(1− |a|2)l!

 l−1∑
j=0

(−1)l−1−j2j

(l − 1− j)!(j + 1)!

 (−a)al−1

+ (1− |a|2)l!
∑

j1+j2+j3=l−1
j1 6=0

(−1)j32l−2−j3

(l − j3)!j3!
al−2(1− |a|2).

For the second sum of the above expression, we first consider a solution (j1, j2)
with j1, j2 ≥ 1 of the equation j1 + j2 = l − 1 − j3 for fixed j3 and allow for
j2 to be zero. Thus we have

(
l−2−j3
l−3−j3

)
+ 1 cases for each fixed j3 and hence by

replacing j3 by j, the above identity which is the same as the entry [Cfa ]l2 is
given by

[Cfa ]l2 = (1− |a|2)l!

 l−1∑
j=0

(−1)l−1−j2j

(l − 1− j)!(j + 1)!

 (−a)al−1

+ (1− |a|2)l!

l−1∑
j=0

[(
l − 2− j
l − 3− j

)
+ 1

]
(−1)j2l−2−j

(l − j)!j!
al−2(1− |a|2).
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Next using the identities (3.1), (3.6), (3.7), we compute the first row of the
matrix as follows.

[Cfa ]1m = (1− |a|2) (fm−1hg1)
∣∣
z=a

= (1− |a|2)[(−a)m−1(1− |a|2)−1(1− |a|2)]

= (1− |a|2)(−a)m−1.

Finally we compute the general form (l,m)-th entry of the matrix for l ≥ 2
and m ≥ 3.

[Cfa ]lm =
1− |a|2

(l − 1)!

dl−1

dzl−1
[
fm−1hgl

]∣∣∣∣
z=a

=
1− |a|2

(l − 1)!

∑
k+j2+j3=l−1

(
l − 1

k, j2, j3

)
(fm−1)(k)h(j2)g

(j3)
l

∣∣∣
z=a

=
1− |a|2

(l − 1)!

∑
j2+j3=l−1

(
l − 1

0, j2, j3

)
(fm−1)(0)h(j2)g

(j3)
l

∣∣∣
z=a

(14)

+
1− |a|2

(l − 1)!

∑
k+j2+j3=l−1

k 6=0

(
l − 1

k, j2, j3

)
(fm−1)(k)h(j2)g

(j3)
l

∣∣∣
z=a

.

Here we used the index k for j1 for the consistency with the formula (10). The
first term of the equation (14) is from Lemmas 3.1, 3.6, and 3.7 equal to

1− |a|2

(l − 1)!

∑
j2+j3=l−1

(
l − 1

0, j2, j3

)
· (−a)m−12j2j2!aj2(1− |a|2)−j2−1(−1)j3

l!

(l − j3)!
aj3(1− |a|2)l−j3

= (1− |a|2)l!

l−1∑
j2=0

(−1)l−1−j22j2

(l − 1− j2)!(j2 + 1)!
(−a)m−1al−1.(15)

And the second term of (14) is from (10), Lemmas 3.6 and 3.7 equal to

1− |a|2

(l − 1)!

∑
k+j2+j3=l−1

k 6=0

{(
l − 1

k, j2, j3

)[
k!

m−2∑
j=0

(
k − 1

k −m+ 1 + j

)(
m− 1

j

)

·2k−m+1+j(−a)jak−m+1+j(1− |a|2)−k+m−1−j

]

·2j2j2!aj2(1− |a|2)−j2−1(−1)j3
l!

(l − j3)!
aj3(1− |a|2)l−j3

}
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= (1− |a|2)
∑

k+j2+j3=l−1
k 6=0

[
1

j3!

m−2∑
j=0

(
k − 1

k −m+ 1 + j

)(
m− 1

j

)

·2k−m+1+j+j2(−1)j3
l!

(l − j3)!
(−a)jak−m+1+j+j2+j3

·(1− |a|2)−k+m−1−j−j2−1+l−j3

]

= (1− |a|2)l!
∑

k+j2+j3=l−1
k 6=0

[
(−1)j3

j3!(l − j3)!

m−2∑
j=0

(
k − 1

k −m+ 1 + j

)(
m− 1

j

)

·2l−m−j3+j(−a)jal−m+j(1− |a|2)m−1−j

]

= (1− |a|2)l!
l−1∑
j2=0

∑
k+j3=l−1−j2

k 6=0

(−1)j3

j3!(l − j3)!

[
m−2∑
j=0

(
k − 1

k −m+ 1 + j

)(
m− 1

j

)
(16)

·2l−m−j3+j(−a)jal−m+j(1− |a|2)m−1−j

]
.

Hence by replacing (14) by the sum of (15) and (16), we obtain the following
final form of (l,m)-th entry of the matrix.

Theorem 4.1. Let U be the unit disc and let a be in U . Then for given two
positive integers l,m, the matrix [Cfa ] of the composition operator Cfa on the
Hardy space H2(bU) with respect to the orthonormal basis {vm |m = 1, 2, . . .}
has (l,m)-th entry

[Cfa ]lm = (1− |a|2)l!

{[
l−1∑
i=0

(−1)l−1−i2i

(l − 1− i)!(i+ 1)!

]
(−a)m−1al−1

+

l−1∑
j2=0

∑
k+j3=l−1−j2

k 6=0

(−1)j3

j3!(l − j3)!

[
m−2∑
j=0

(
k − 1

k −m+ 1 + j

)(
m− 1

j

)

· 2l−m−j3+j(−a)jal−m+j(1− |a|2)m−1−j

]}
.

Remark 4.2. For an easy reference, the first few elements of the matrix are
listed as follows:

[Cfa ] = (1− |a|2)


1 −a (−a)2 · · ·
0 1− |a|2 2(−a)(1− |a|2) · · ·
a2 (−a)a2 − 15a(1− |a|2) (−a)2a2 + (1− |a|2)2 + 4(−a)a(1− |a|2) · · ·
...

...
...

.
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