• Title/Summary/Keyword: Systolic multiplier

Search Result 43, Processing Time 0.02 seconds

An Efficient Bit-serial Systolic Multiplier over GF($2^m$) (GF($2^m$)상의 효율적인 비트-시리얼 시스톨릭 곱셈기)

  • Lee Won-Ho;Yoo Kee-Young
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.33 no.1_2
    • /
    • pp.62-68
    • /
    • 2006
  • The important arithmetic operations over finite fields include multiplication and exponentiation. An exponentiation operation can be implemented using a series of squaring and multiplication operations over GF($2^m$) using the binary method. Hence, it is important to develop a fast algorithm and efficient hardware for multiplication. This paper presents an efficient bit-serial systolic array for MSB-first multiplication in GF($2^m$) based on the polynomial representation. As compared to the related multipliers, the proposed systolic multiplier gains advantages in terms of input-pin and area-time complexity. Furthermore, it has regularity, modularity, and unidirectional data flow, and thus is well suited to VLSI implementation.

Low-latency Montgomery AB2 Multiplier Using Redundant Representation Over GF(2m)) (GF(2m) 상의 여분 표현을 이용한 낮은 지연시간의 몽고메리 AB2 곱셈기)

  • Kim, Tai Wan;Kim, Kee-Won
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.12 no.1
    • /
    • pp.11-18
    • /
    • 2017
  • Finite field arithmetic has been extensively used in error correcting codes and cryptography. Low-complexity and high-speed designs for finite field arithmetic are needed to meet the demands of wider bandwidth, better security and higher portability for personal communication device. In particular, cryptosystems in GF($2^m$) usually require computing exponentiation, division, and multiplicative inverse, which are very costly operations. These operations can be performed by computing modular AB multiplications or modular $AB^2$ multiplications. To compute these time-consuming operations, using $AB^2$ multiplications is more efficient than AB multiplications. Thus, there are needs for an efficient $AB^2$ multiplier architecture. In this paper, we propose a low latency Montgomery $AB^2$ multiplier using redundant representation over GF($2^m$). The proposed $AB^2$ multiplier has less space and time complexities compared to related multipliers. As compared to the corresponding existing structures, the proposed $AB^2$ multiplier saves at least 18% area, 50% time, and 59% area-time (AT) complexity. Accordingly, it is well suited for VLSI implementation and can be easily applied as a basic component for computing complex operations over finite field, such as exponentiation, division, and multiplicative inverse.

Design of Bit-Parallel Multiplier over Finite Field $GF(2^m)$ (유한체 $GF(2^m)$상의 비트-병렬 곱셈기의 설계)

  • Seong, Hyeon-Kyeong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.7
    • /
    • pp.1209-1217
    • /
    • 2008
  • In this paper, we present a new bit-parallel multiplier for performing the bit-parallel multiplication of two polynomials in the finite fields $GF(2^m)$. Prior to construct the multiplier circuits, we consist of the vector code generator(VCG) to generate the result of bit-parallel multiplication with one coefficient of a multiplicative polynomial after performing the parallel multiplication of a multiplicand polynomial with a irreducible polynomial. The basic cells of VCG have two AND gates and two XOR gates. Using these VCG, we can obtain the multiplication results performing the bit-parallel multiplication of two polynomials. Extending this process, we show the design of the generalized circuits for degree m and a simple example of constructing the multiplier circuit over finite fields $GF(2^4)$. Also, the presented multiplier is simulated by PSpice. The multiplier presented in this paper use the VCGs with the basic cells repeatedly, and is easy to extend the multiplication of two polynomials in the finite fields with very large degree m, and is suitable to VLSI.

A New Systolic Array for LSD-first Multiplication in $CF(2^m)$ ($CF(2^m)$상의 LSD 우선 곱셈을 위한 새로운 시스톨릭 어레이)

  • Kim, Chang-Hoon;Nam, In-Gil
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.4C
    • /
    • pp.342-349
    • /
    • 2008
  • This paper presents a new digit-serial systolic multiplier over $CF(2^m)$ for cryptographic applications. When input data come in continuously, the proposed array produces multiplication results at a rate of one every ${\lceil}m/D{\rceil}$ clock cycles, where D is the selected digit size. Since the inner structure of the proposed array is tree-type, critical path increases logarithmically proportional to D. Therefore, the computation delay of the proposed architecture is significantly less than previously proposed digit-serial systolic multipliers whose critical path increases proportional to D. Furthermore, since the new architecture has the features of regularity, modularity, and unidirectional data flow, it is well suited to VLSI implementations.

Design of a Bit-Level Super-Systolic Array (비트 수준 슈퍼 시스톨릭 어레이의 설계)

  • Lee Jae-Jin;Song Gi-Yong
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.12
    • /
    • pp.45-52
    • /
    • 2005
  • A systolic array formed by interconnecting a set of identical data-processing cells in a uniform manner is a combination of an algorithm and a circuit that implements it, and is closely related conceptually to arithmetic pipeline. High-performance computation on a large array of cells has been an important feature of systolic array. To achieve even higher degree of concurrency, it is desirable to make cells of systolic array themselves systolic array as well. The structure of systolic array with its cells consisting of another systolic array is to be called super-systolic array. This paper proposes a scalable bit-level super-systolic amy which can be adopted in the VLSI design including regular interconnection and functional primitives that are typical for a systolic architecture. This architecture is focused on highly regular computational structures that avoids the need for a large number of global interconnection required in general VLSI implementation. A bit-level super-systolic FIR filter is selected as an example of bit-level super-systolic array. The derived bit-level super-systolic FIR filter has been modeled and simulated in RT level using VHDL, then synthesized using Synopsys Design Compiler based on Hynix $0.35{\mu}m$ cell library. Compared conventional word-level systolic array, the newly proposed bit-level super-systolic arrays are efficient when it comes to area and throughput.

Design of High-Speed Parallel Multiplier over Finite Field $GF(2^m)$ (유한체 $GF(2^m)$상의 고속 병렬 승산기의 설계)

  • Seong Hyeon-Kyeong
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.43 no.5 s.311
    • /
    • pp.36-43
    • /
    • 2006
  • In this paper we present a new high-speed parallel multiplier for Performing the bit-parallel multiplication of two polynomials in the finite fields $GF(2^m)$. Prior to construct the multiplier circuits, we consist of the MOD operation part to generate the result of bit-parallel multiplication with one coefficient of a multiplicative polynomial after performing the parallel multiplication of a multiplicand polynomial with a irreducible polynomial. The basic cells of MOD operation part have two AND gates and two XOR gates. Using these MOD operation parts, we can obtain the multiplication results performing the bit-parallel multiplication of two polynomials. Extending this process, we show the design of the generalized circuits for degree m and a simple example of constructing the multiplier circuit over finite fields $GF(2^4)$. Also, the presented multiplier is simulated by PSpice. The multiplier presented in this paper use the MOD operation parts with the basic cells repeatedly, and is easy to extend the multiplication of two polynomials in the finite fields with very large degree m, and is suitable to VLSI. Also, since this circuit has a low propagation delay time generated by the gates during operating process because of not use the memory elements in the inside of multiplier circuit, this multiplier circuit realizes a high-speed operation.

A Design of Cellular Array Parallel Multiplier on Finite Fields GF(2m) (유한체 GF(2m)상의 셀 배열 병렬 승산기의 설계)

  • Seong, Hyeon-Kyeong
    • The KIPS Transactions:PartA
    • /
    • v.11A no.1
    • /
    • pp.1-10
    • /
    • 2004
  • A cellular array parallel multiplier with parallel-inputs and parallel-outputs for performing the multiplication of two polynomials in the finite fields GF$(2^m)$ is presented in this paper. The presented cellular way parallel multiplier consists of three operation parts: the multiplicative operation part (MULOP), the irreducible polynomial operation part (IPOP), and the modular operation part (MODOP). The MULOP and the MODOP are composed if the basic cells which are designed with AND Bates and XOR Bates. The IPOP is constructed by XOR gates and D flip-flops. This multiplier is simulated by clock period l${\mu}\textrm{s}$ using PSpice. The proposed multiplier is designed by 24 AND gates, 32 XOR gates and 4 D flip-flops when degree m is 4. In case of using AOP irreducible polynomial, this multiplier requires 24 AND gates and XOR fates respectively. and not use D flip-flop. The operating time of MULOP in the presented multiplier requires one unit time(clock time), and the operating time of MODOP using IPOP requires m unit times(clock times). Therefore total operating time is m+1 unit times(clock times). The cellular array parallel multiplier is simple and regular for the wire routing and have the properties of concurrency and modularity. Also, it is expansible for the multiplication of two polynomials in the finite fields with very large m.

A Simple Discrete Cosine Transform Systolic Array Based on DFT for Video Codec (DFT에 의한 비데오 코덱용 DCT의 단순한 시스톨릭 어레이)

  • 박종오;이광재;양근호;박주용;이문호
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.11
    • /
    • pp.1880-1885
    • /
    • 1989
  • In this paper, a new approach for systolic array realizing the discrete cosine transform (DCT) based on discrete Fourier transform (DFT) of an input sequence is presented. The proposed array is based on a simple modified DFT(MDFT) version of the Goertzel algorithm combined with Kung's approach and is proved perfectly. This array requires N cells, one multiplier and takes N clock cycles to produce a complete N-point DCT and also is able to process a continuous stream of data sequences. We have analyzed the output signal-to-noise ratio(SNR) and designed the circuit level layout of one-PE chip. The array coefficients are static adn thus stored-product ROM's can be used in place of multipliers to limit cost as eliminate errors due to coefficients quantization.

  • PDF

Design of Linear Systolic Arrays of Modular Multiplier for the Fast Modular Exponentiation (고속 모듈러 지수연산을 위한 모듈러 곱셈기의 선형 시스톨릭 어레이 설계)

  • Lee, Geon-Jik;Heo, Yeong-Jun;Yu, Gi-Yeong
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.26 no.9
    • /
    • pp.1055-1063
    • /
    • 1999
  • 공개키 암호화 시스템에서 주된 연산은 512비트 이상의 큰 수에 의한 모듈러 지수 연산으로 표현되며, 이 연산은 내부적으로 모듈러 곱셈을 반복적으로 수행함으로써 계산된다. 본 논문에서는 Montgomery 알고리즘을 분석하여 right-to-left 방식의 모듈러 지수 연산에서 공통으로 계산 가능한 부분을 이용하여 모듈러 제곱과 모듈러 곱셈을 동시에 수행하는 선형 시스톨릭 어레이를 설계한다. 설계된 시스톨릭 어레이는 VLSI 칩과 같은 하드웨어로 구현함으로써 IC 카드나 smart 카드에 이용될 수 있다.Abstract The main operation of the public-key cryptographic system is represented the modular exponentiation containing 512 or more bits and computed by performing the repetitive modular multiplications. In this paper, we analyze Montgomery algorithm and design the linear systolic array for performing modular multiplication and modular squaring simultaneously using the computable part in common in right-to-left modular exponentiation. The systolic array presented in this paper could be designed on VLSI hardware and used in IC and smart card.

Design of Montgomery Algorithm and Hardware Architecture over Finite Fields (유한 체상의 몽고메리 알고리즘 및 하드웨어 구조 설계)

  • Kim, Kee-Won;Jeon, Jun-Cheol
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.18 no.2
    • /
    • pp.41-46
    • /
    • 2013
  • Finite field multipliers are the basic building blocks in many applications such as error-control coding, cryptography and digital signal processing. Recently, many semi-systolic architectures have been proposed for multiplications over finite fields. Also, Montgomery multiplication algorithm is well known as an efficient arithmetic algorithm. In this paper, we induce an efficient multiplication algorithm and propose an efficient semi-systolic Montgomery multiplier based on polynomial basis. We select an ideal Montgomery factor which is suitable for parallel computation, so our architecture is divided into two parts which can be computed simultaneously. In analysis, our architecture reduces 30%~50% of time complexity compared to typical architectures.