• Title/Summary/Keyword: Systems approach

Search Result 10,031, Processing Time 0.045 seconds

Analysis of Research Trends of the Information Security Audit Area Through Literature Review (문헌 분석을 통한 정보보안 감사 분야의 국내 및 국제 연구동향 분석)

  • So, Youngjae;Hwang, Kyung Tae
    • Informatization Policy
    • /
    • v.30 no.4
    • /
    • pp.3-39
    • /
    • 2023
  • With the growing importance of information/information system, information security is emphasized, and the significance of information security audit as a tool for maintaining the proper security level is increasing as well. The objectives of the study are to identify the overall research trends and to propose future research areas by analyzing domestic and overseas research in the area. To achieve the objectives, 103 research papers were analyzed based on both general and subject-related criteria. The following are the major research results : In terms of research approach, more empirical studies are needed; For subject "Auditor," studies to develop a framework for related variables (e.g., capability) are needed; For subject "Audit Activities/Procedures," future research should focus on the process/results of detailed audit activities; Future domestic research for "Audit Areas" should look for the new technology/industry/security areas covered by foreign studies; For "Audit Objective/Impact," studies to define the variables (e.g., performance and quality) systematically and comprehensively are needed; For "Audit Standard/Guidelines," research on model/guideline needs to be continued.

Empirical correlation for in-situ deformation modulus of sedimentary rock slope mass and support system recommendation using the Qslope method

  • Yimin Mao;Mohammad Azarafza;Masoud Hajialilue Bonab;Marc Bascompta;Yaser A. Nanehkaran
    • Geomechanics and Engineering
    • /
    • v.35 no.5
    • /
    • pp.539-554
    • /
    • 2023
  • This article is dedicated to the pursuit of establishing a robust empirical relationship that allows for the estimation of in-situ modulus of deformations (Em and Gm) within sedimentary rock slope masses through the utilization of Qslope values. To achieve this significant objective, an expansive and thorough methodology is employed, encompassing a comprehensive field survey, meticulous sample collection, and rigorous laboratory testing. The study sources a total of 26 specimens from five distinct locations within the South Pars (known as Assalouyeh) region, ensuring a representative dataset for robust correlations. The results of this extensive analysis reveal compelling empirical connections between Em, geomechanical characteristics of the rock mass, and the calculated Qslope values. Specifically, these relationships are expressed as follows: Em = 2.859 Qslope + 4.628 (R2 = 0.554), and Gm = 1.856 Qslope + 3.008 (R2 = 0.524). Moreover, the study unravels intriguing insights into the interplay between in-situ deformation moduli and the widely utilized Rock Mass Rating (RMR) computations, leading to the formulation of equations that facilitate predictions: RMR = 18.12 Em0.460 (R2 = 0.798) and RMR = 22.09 Gm0.460 (R2 = 0.766). Beyond these correlations, the study delves into the intricate relationship between RMR and Rock Quality Designation (RQD) with Qslope values. The findings elucidate the following relationships: RMR = 34.05e0.33Qslope (R2 = 0.712) and RQD = 31.42e0.549Qslope (R2 = 0.902). Furthermore, leveraging the insights garnered from this comprehensive analysis, the study offers an empirically derived support system tailored to the distinct characteristics of discontinuous rock slopes, grounded firmly within the framework of the Qslope methodology. This holistic approach contributes significantly to advancing the understanding of sedimentary rock slope stability and provides valuable tools for informed engineering decisions.

A Simple Design of an Imaging System for Accurate Spatial Mapping of Blood Oxygen Saturation Using a Single Element of Multi-wavelength LED (혈중 산소 포화도의 정확한 공간 매핑을 위한 다중 파장 LED 단일소자를 활용한 이미징 시스템 설계)

  • Jun Hwan Kim;Gi Yeon Yu;Ye Eun Song;Chan Yeong Yu;Yun Chae Jang;Riaz Muhammad;Kay Thwe Htun;Ahmed Ali;Seung Ho Choi
    • Journal of Biomedical Engineering Research
    • /
    • v.44 no.6
    • /
    • pp.450-464
    • /
    • 2023
  • Pulse oximetry, a non-invasive technique for evaluating blood oxygen saturation, conventionally depends on isolated measurements, rendering it vulnerable to factors like illumination profile, spatial blood flow fluctuations, and skin pigmentation. Previous efforts to address these issues through imaging systems often employed red and near-infrared illuminations with distinct profiles, leading to inconsistent ratios of transmitted light and the potential for errors in calculating spatial oxygen saturation distributions. While an integrating sphere was recently utilized as an illumination source to achieve uniform red and near-infrared illumination profiles on the sample surface, its bulkiness presented practical challenges. In this work, we have enhanced the pulse oximetry imaging system by transitioning illumination from an integrating sphere to a multi-wavelength LED configuration. This adjustment ensures simultaneous emission of red and near-infrared light from the same position, creating a homogeneous illumination profile on the sample surface. This approach guarantees consistent patterns of red and near-infrared illuminations that are spatially uniform. The sustained ratio between transmitted red and near-infrared light across space enables precise calculation of the spatial distribution of oxygen saturation, making our pulse oximetry imaging system more compact and portable without compromising accuracy. Our work significantly contributes to obtaining spatial information on blood oxygen saturation, providing valuable insights into tissue oxygenation in peripheral regions.

An Ecosystem Model and Content Research of the Satellite Information Utilization Business (위성정보 활용 사업의 생태계 모델과 콘텐츠 연구)

  • Seungkuk Baik ;Jinhwa Roh;Hyounjoo Shim;Xuanning Zhu
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_4
    • /
    • pp.1075-1084
    • /
    • 2023
  • Satellite-derived data is collected by observing the Earth and is used in various fields such as national defense, natural disasters, location-based services, infrastructure, environment, energy, marine, and insurance. This study aims to present the virtuous cycle structure of the satellite information data industry and the business ecosystem model of the industry. As a research method, cases were collected and categorized from the following areas: literature, online, application, and content. The results show that the ecosystem model of the satellite information data industry provides an approach to content services in public and commercial areas, and develops various algorithmic technologies to facilitate content production and services at the level of complex general-purpose technologies. Second, in terms of content typology, satellite information data can be subdivided into monitoring content, urban space monitoring content, and satellite information content. Third, the consumption value of satellite content could be subdivided into informational value, environmental, social and governance (ESG) value, educational value, and content value. In order to expand the global content market, Korea will need to focus on creating an ecosystem for the satellite information industry and discovering differentiated content. It will also need to increase the popularization and accessibility of data to the general public and promote the Korean K-Satellite Information Data Industry ecosystem through government support, policy efforts, and policies such as establishing legal systems, increasing investment, and training human resources.

Design and Implementation of a Project Work Unit-based Scheduling Application (프로젝트 작업 단위 기반 일정 관리 애플리케이션의 설계 및 구현)

  • Bomin Kim;Minyoung Kim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.6
    • /
    • pp.1173-1178
    • /
    • 2023
  • In modern society, there is a tendency to emphasize efficiency and lead to detailed planning of team projects and individual tasks within organizations. In a 24-hour routine, the ability to use time effectively is considered an indicator of conscientiousness, and people try to imitate planned and organized people and utilize various systems to manage their daily lives. The reason why you want to perform a given task efficiently is because it affects the success or failure of the project by completing the task within a set period of time. Neglecting the project schedule is considered a major risk that threatens a successful outcome. This applies not only to large-scale organizational projects but also to individual life, and utilizes a variety of schedule management tools that emphasize time-based efficient management. In project management, it is necessary to carefully understand the detailed work progress rather than simply based on Today. In this paper, we propose an Android application that can manage schedules by accessing the user's project in units of tasks rather than dates, and introduce its implementation. The application we implemented in this paper can manage the project's goals and schedule by registering the project to which the user belongs. In addition, it provides the ability to approach work efficiently by visualizing the progress of the entire project or individual goals. As a result, users can use the application we propose in this paper to focus on their projects and manage schedules by task, thereby improving the overall efficiency of the project.

Development of a Tourist Satisfaction Quantitative Index for Building a Rating Prediction Model: Focusing on Jeju Island Tourist Spot Reviews (평점 예측 모델 개발을 위한 관광지 만족도 정량 지수 구축: 제주도 관광지 리뷰를 중심으로)

  • Dong-kyu Yun;Ki-tae Park;Sang-hyun Choi
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.4
    • /
    • pp.185-205
    • /
    • 2023
  • As the tourism industry recovers post the COVID-19 pandemic, an increasing number of tourists are utilizing various platforms to leave reviews. However, amidst the vast amount of data, finding useful information remains challenging, often leading to time and cost inefficiencies in selecting travel destinations. Despite ongoing research, there are limitations due to the absence of ratings or the presence of different rating formats across platforms. Moreover, inconsistencies between ratings and the content of reviews pose challenges in developing recommendation models. To address these issues, this study utilized 7,104 reviews of tourist spots in Jeju Island to develop a specialized satisfaction index for Jeju tourist attractions and employed this index to construct a 'Rating Prediction Model.' To validate the model's performance, we predicted the ratings of 700 experimental data points using both the developed model and an LSTM approach. The proposed model demonstrated superior performance with a weighted accuracy of 73.87%, which is approximately 4.67% higher than that of the LSTM. The results of this study are expected to resolve the discrepancies between ratings and review contents, standardize ratings in reviews without ratings or in various formats, and provide reliable rating indicators applicable across all areas of travel in different domains.

Research on water quality and flow rate measurement by applying GPS electronic Floater standard experimental method when water environmental chemical accidents occur (수환경 화학사고 발생시 GPS 전자부자 표준실험법 적용을 통한 수질-수리 측정에 대한 연구)

  • Lee, Chang Hyun;Nam, Su Han;Kim, Young Do
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.12
    • /
    • pp.845-853
    • /
    • 2023
  • Recently, along with the increase in chemical accidents, the number of accidents-related disasters has been increasing continuously since 2012, and when looking at the hydrogen fluoride incident which is a representative example of domestic chemical incidents, there is insufficient technology applicable to the incident site. The result was that the damage spread. Therefore, in this paper, we will adapt the water pollution accident response system to a location-based approach, and introduce a measurement method for alternative index tracking using a GPS electronic floater of a location-based index measurement method for real-time response in the water environment when a chemical incident occurs. The research target area is Gumi City, which is the area where the hydrogen fluoride incident occurred, and Gamcheon is selected, and alternative tracking using GPS electronic floater is conducted in the corresponding target area through water quality and flow measurement. As a result, it is possible to measure water quality and flow at the same time in tracker experiments using GPS electronic floater based on the research results, it is believed that using GPS electronic floater will be of great help in disaster response systems for spill incidents in the river.

A Study on the Concept Definition and Institutional Foundations of Local Forestry Using the Delphi Technique (델파이 기법을 적용한 지역임업 개념의 정의와 제도 기반에 관한 연구)

  • Ju Yeon Kim;Jae Hyun Kim
    • Journal of Korean Society of Forest Science
    • /
    • v.113 no.2
    • /
    • pp.239-258
    • /
    • 2024
  • In the face of complex crises such as a shrinking society, regional imbalance, and climate change, there is a need to seek sustainable development in local communities. In the forest sector, attempts are being made to link forest resources with local industries. However, the current support system, which is centered on the central government, has limitations in achieving sustainable forest management. On the other hand, the international community is actively promoting a shift in systems by introducing the concept of local forestry, which emphasizes local initiatives to achieve sustainable forest management. However, in the Republic of Korea, the concept of local forestry is still unclear, which hinders the promotion of a paradigm shift. In this paper, we applied the Delphi technique to conduct three surveys of 29 academics, administrators, and field experts in the Republic of Korea. The aim was to define the concept of local forestry that is suitable for domestic conditions and identify institutional measures to establish and revitalize it. The results showed that local forestry can be defined as a broad concept that is both consultative and systemic in nature and that an institutional approach that supports actors and their activities is necessary to revitalize local forestry.

A Study on the Intelligent Online Judging System Using User-Based Collaborative Filtering

  • Hyun Woo Kim;Hye Jin Yun;Kwihoon Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.1
    • /
    • pp.273-285
    • /
    • 2024
  • With the active utilization of Online Judge (OJ) systems in the field of education, various studies utilizing learner data have emerged. This research proposes a problem recommendation based on a user-based collaborative filtering approach with learner data to support learners in their problem selection. Assistance in learners' problem selection within the OJ system is crucial for enhancing the effectiveness of education as it impacts the learning path. To achieve this, this system identifies learners with similar problem-solving tendencies and utilizes their problem-solving history. The proposed technique has been implemented on an OJ site in the fields of algorithms and programming, operated by the Chungbuk Education Research and Information Institute. The technique's service utility and usability were assessed through expert reviews using the Delphi technique. Additionally, it was piloted with site users, and an analysis of the ratio of correctness revealed approximately a 16% higher submission rate for recommended problems compared to the overall submissions. A survey targeting users who used the recommended problems yielded a 78% response rate, with the majority indicating that the feature was helpful. However, low selection rates of recommended problems and low response rates within the subset of users who used recommended problems highlight the need for future research focusing on improving accessibility, enhancing user feedback collection, and diversifying learner data analysis.

Automated Finite Element Analyses for Structural Integrated Systems (통합 구조 시스템의 유한요소해석 자동화)

  • Chongyul Yoon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.1
    • /
    • pp.49-56
    • /
    • 2024
  • An automated dynamic structural analysis module stands as a crucial element within a structural integrated mitigation system. This module must deliver prompt real-time responses to enable timely actions, such as evacuation or warnings, in response to the severity posed by the structural system. The finite element method, a widely adopted approximate structural analysis approach globally, owes its popularity in part to its user-friendly nature. However, the computational efficiency and accuracy of results depend on the user-provided finite element mesh, with the number of elements and their quality playing pivotal roles. This paper introduces a computationally efficient adaptive mesh generation scheme that optimally combines the h-method of node movement and the r-method of element division for mesh refinement. Adaptive mesh generation schemes automatically create finite element meshes, and in this case, representative strain values for a given mesh are employed for error estimates. When applied to dynamic problems analyzed in the time domain, meshes need to be modified at each time step, considering a few hundred or thousand steps. The algorithm's specifics are demonstrated through a standard cantilever beam example subjected to a concentrated load at the free end. Additionally, a portal frame example showcases the generation of various robust meshes. These examples illustrate the adaptive algorithm's capability to produce robust meshes, ensuring reasonable accuracy and efficient computing time. Moreover, the study highlights the potential for the scheme's effective application in complex structural dynamic problems, such as those subjected to seismic or erratic wind loads. It also emphasizes its suitability for general nonlinear analysis problems, establishing the versatility and reliability of the proposed adaptive mesh generation scheme.