DOI QR코드

DOI QR Code

Empirical correlation for in-situ deformation modulus of sedimentary rock slope mass and support system recommendation using the Qslope method

  • Yimin Mao (School of Information and Engineering, Shaoguan University) ;
  • Mohammad Azarafza (Department of Civil Engineering, University of Tabriz) ;
  • Masoud Hajialilue Bonab (Department of Civil Engineering, University of Tabriz) ;
  • Marc Bascompta (Department of Mining Engineering, Polytechnic University of Catalonia) ;
  • Yaser A. Nanehkaran (School of Information Engineering, Yancheng Teachers University)
  • Received : 2022.05.13
  • Accepted : 2023.11.17
  • Published : 2023.12.10

Abstract

This article is dedicated to the pursuit of establishing a robust empirical relationship that allows for the estimation of in-situ modulus of deformations (Em and Gm) within sedimentary rock slope masses through the utilization of Qslope values. To achieve this significant objective, an expansive and thorough methodology is employed, encompassing a comprehensive field survey, meticulous sample collection, and rigorous laboratory testing. The study sources a total of 26 specimens from five distinct locations within the South Pars (known as Assalouyeh) region, ensuring a representative dataset for robust correlations. The results of this extensive analysis reveal compelling empirical connections between Em, geomechanical characteristics of the rock mass, and the calculated Qslope values. Specifically, these relationships are expressed as follows: Em = 2.859 Qslope + 4.628 (R2 = 0.554), and Gm = 1.856 Qslope + 3.008 (R2 = 0.524). Moreover, the study unravels intriguing insights into the interplay between in-situ deformation moduli and the widely utilized Rock Mass Rating (RMR) computations, leading to the formulation of equations that facilitate predictions: RMR = 18.12 Em0.460 (R2 = 0.798) and RMR = 22.09 Gm0.460 (R2 = 0.766). Beyond these correlations, the study delves into the intricate relationship between RMR and Rock Quality Designation (RQD) with Qslope values. The findings elucidate the following relationships: RMR = 34.05e0.33Qslope (R2 = 0.712) and RQD = 31.42e0.549Qslope (R2 = 0.902). Furthermore, leveraging the insights garnered from this comprehensive analysis, the study offers an empirically derived support system tailored to the distinct characteristics of discontinuous rock slopes, grounded firmly within the framework of the Qslope methodology. This holistic approach contributes significantly to advancing the understanding of sedimentary rock slope stability and provides valuable tools for informed engineering decisions.

Keywords

Acknowledgement

The authors would like to thank the anonymous reviewers for providing invaluable review comments and recommendations for improving the scientific level of the article. This work is supported by the Key Improvement Projects of Guangdong Province with Grant Number 2022ZDJS048, the Shaoguan Science and Technology Plan Projects with Grant Number 220607154531533, and the National Nature Sciences Foundation of China with Grant Number 42250410321.

References

  1. AASHTO (1989), Standard specifications for highway bridges (14th edition), Washington, DC: American Association of State Highway and Transportation Officials.
  2. Aghanabati, A. (2007), Geology of Iran: ministry of industry and mines, Geological Survey of Iran [in Farsi].
  3. Alavi, M. (2004), "Regional stratigraphy of the Zagrosfolded-thrust belt of Iran and its proforeland evolution", AJS, 304, 1-20. https://doi.org/10.2475/ajs.304.1.1.
  4. Alemdag, S., Gurocak, Z. and Gokceoglu, C. (2015), "A simple regression based approach to estimate deformation modulus of rock masses", J. Afr. Earth Sci., 110, 75-80. https://doi.org/10.1016/j.jafrearsci.2015.06.011.
  5. ASTM D4373 (2014), Standard Test Method for Rapid Calcium Carbonate Content of Soils, ASTM International, West Conshohocken, Pennsylvania, USA.
  6. ASTM D5607 (2016), Standard Test Method for Performing Laboratory Direct Shear Strength Tests of Rock Specimens Under Constant Normal Force, ASTM International, West Conshohocken, Pennsylvania, USA.
  7. ASTM D7012 (2014), Standard Test Methods for Compressive Strength and Elastic Moduli of Intact Rock Core Specimens under Varying States of Stress and Temperatures, ASTM International, West Conshohocken, Pennsylvania, USA.
  8. Aydan, O., Ulusay, R. and Kawamoto, T. (1997), "Assessment of rock mass strength for underground excavations", Proceedings of the 36th US Rock Mechanics Symposium, New York.
  9. Azarafza, M., Akgun, H. and Asghari-Kaljahi, E. (2017a), "Assessment of rock slope stability by slope mass rating (SMR): a case study for the gas flare site in Assalouyeh, South of Iran", Geomech. Eng., 13(4), 571-584. https://doi.org/10.12989/gae.2017.13.4.571.
  10. Azarafza, M., Akgun, H., Ghazifard, A., Asghari-Kaljahi, E., Rahnamarad, J. and Derakhshani, R. (2021b), "Discontinuous rock slope stability analysis by limit equilibrium approaches-a review", Int. J. Digital Earth, 14(12), 1918-1941. https://doi.org/10.1080/17538947.2021.1988163.
  11. Azarafza, M., Asghari-Kaljahi, E. and Akgun, H. (2017b), "Assessment of discontinuous rock slope stability with block theory and numerical modeling: a case study for the South Pars Gas Complex, Assalouyeh, Iran", Environ. Earth Sci., 76, 397. https://doi.org/10.1007/s12665-017-6711-9.
  12. Azarafza, M., Asghari-Kaljahi, E. and Akgun, H. (2017c), "Numerical modeling of discontinuous rock slopes utilizing the 3DDGM (three-dimensional discontinuity geometrical modeling) method", Bull. Eng. Geol. Environ., 76, 989-1007. https://doi.org/10.1007/s10064-016-0879-1.
  13. Azarafza, M., Ghazifard, A., Akgun, H. and Asghari-Kaljahi, E. (2019), "Geotechnical characteristics and empirical geoengineering relations of the South Pars Zone marls, Iran", Geomech. Eng., 19(5), 393-405. https://doi.org/10.12989/gae.2019.19.5.393.
  14. Azarafza, M., Kockar, M. K. and Zhu, H.H. (2021a), "Correlations of SMR-Qslope data in stability classification of discontinuous rock slope: A modified relationship considering the Iranian data", Geotech. Geol. Eng., https://doi.org/10.1007/s10706-021-01991-w.
  15. Azarafza, M., Nanehkaran, Y.A., Rajabion, L., Akgun, H., Rahnamarad, J., Derakhshani, R. and Raoof, A. (2020a), "Application of the modified Q-slope classification system for sedimentary rock slope stability assessment in Iran", Eng. Geol., 264, 105349. https://doi.org/10.1016/j.enggeo.2019.105349.
  16. Azarafza, M., Nikoobakht, S., Rahnamarad, J., Asasi, F. and Derakhshani, R. (2020b), "An empirical method for slope mass rating-Qslope correlation for Isfahan province, Iran", MethodsX, 7, 101069. https://doi.org/10.1016/j.mex.2020.101069.
  17. Bar, N. and Barton, N. (2017), "The Q-slope method for rock slope engineering", Rock Mech. Rock Eng., 50, 3307-3322. https://doi.org/10.1007/s00603-017-1305-0.
  18. Bar, N. and McQuillan, A. (2021), "Q-slope and SSAM applied to excavated coal mine slopes", MethodsX, 8, 101191. https://doi.org/10.1016/j.mex.2020.101191.
  19. Barton, N. (1983), "Application of Q system and index tests to estimate shear strength and deformability of rock masses", Proceedings of the International Symposium on Engineering Geology and Underground Construction, Lisbon, Portugal.
  20. Barton, N. (1995), "The influence of joint properties in modelling jointed rock masses", Proceedings of the 8th International Congress on Rock Mechanics, Tokyo, Japan.
  21. Barton, N. and Bar, N. (2015), "Introducing the Q-slope method and its intended use within civil and mining engineering projects", Proceedings of the ISRM Regional Symposium-EUROCK 2015, International Society for Rock Mechanics and Rock Engineering.
  22. Barton, N.R., Lien, R. and Lunde, J. (1974), "Engineering classification of rock masses for the design of tunnel support", Rock Mech. Rock Eng., 6(4), 189-236. https://doi.org/10.1007/BF01239496.
  23. Bieniawski, Z.T. (1978), "Determining rock mass deformability: Experience from case histories", Int. J. Rock Mech. Min. Sci. Geomech. Abst., 15, 237-248. https://doi.org/10.1016/0148-9062(78)90956-7
  24. Bieniawski, Z.T. (1989), Engineering Rock Mass Classifications: a Complete Manual for Engineers and Geologists in Mining, Civil, and Petroleum Engineering, John Wiley & Sons.
  25. Braun, M.T. and Oswald, F.L. (2011), "Exploratory regression analysis: A tool for selecting models and determining predictor importance", Behav. Res. Methods, 43, 331-339. https://doi.org/10.3758/s13428-010-0046-8.
  26. Chiarella, D., Longhitano, S.G. and Tropeano, M. (2017), "Types of mixing and heterogeneities in siliciclastic-carbonate sediments", Mar. Petrol. Geol., 88, 617-627. https://doi.org/10.1016/j.marpetgeo.2017.09.010.
  27. Clayton, C.R. (2011), "Stiffness at Small Strain: Research and Practice", Fiftieth Rankine Lecture, Geotechnique, 61(1), 5-37. https://doi.org/10.1680/geot.2011.61.1.5
  28. Clerici, A. (1993), "Indirect determination of the modulus of deformation of rock masses - Case histories", Proceedings of the Eurock '93, 509-517.
  29. Coon, R.F. and Merritt, A.H. (1970), "Predicting in situ modulus of deformation using rock quality indices. Determination of the in situ modulus of deformation of rock", ASTM STP, 477, 154-173.
  30. Davarpanah, S.M., Bar, N., Torok, A., Tarifard, A. and Vasarhelyi, B., (2020), "Technical note: Determination of young's modulus and Poisson's Ratio for intact stratified rocks and their relationship with uniaxial compressive strength", Australian Geomech. J., 55(4), 101-118.
  31. Deere, D.U. and Deere, D.W. (1988), "The Rock Quality Designation (RQD) index in practice", Proceedings of the International Symposium Rock Class Engineering Purpose, ASTM International, PA.
  32. Francioni, M., Stead, D., Sciarra, N. and Calamita, F. (2019), "A new approach for defining Slope Mass Rating in heterogeneous sedimentary rocks using a combined remote sensing GIS approach", Bull. Eng. Geol. Environ., 78(6), 4253-4274. https://doi.org/10.1007/s10064-018-1396-1.
  33. Galera, J.M., Alvarez, M. and Bieniawski, Z.T. (2005)," Evaluation of the deformation modulus of rock masses: comparison of pressuremeter and dilatometer tests with RMR prediction", Proceedings of the ISP5-PRESSIO 2005 International Symposium.
  34. Geological Survey of Iran (2009), Geological map of Kangan and Assalouyeh-scale: 1:250.000, Geological Survey of Iran Press, Tehran [in Persian].
  35. Gokceoglu, C., Sonmez, H. and Kayabasi, A. (2003), "Predicting the deformation moduli of rock masses", Int. J. Rock Mech. Min. Sci., 40, 701-710. https://doi.org/10.1016/S1365-1609(03)00062-5.
  36. Grimstad, E. and Barton, N. (1993), "Updating the Q-system for NMT", Proceedings of the International Symposium on Sprayed Concrete, Fagernes, Norway.
  37. Harrison, J.P. and Hudson, J.A. (2000), Engineering Rock Mechanics: Illustrative Worked Examples, 530.
  38. Hoek, E. and Diederichs, M. (2006), "Empirical estimates of rock mass modulus", Int. J. Rock Mech. Min. Sci., 43, 203-215. https://doi.org/10.1016/j.ijrmms.2005.06.005
  39. Hoek, E., Carranza-Torres, C. and Corkum, B. (2002), "Hoek-Brown failure criterion-2002 edition", Proceedings of the 5th North American Rock Mechanics Symposium and 17 the Tunneling Association of Canada Conference: NARMS-TAC 2002, July.
  40. Jasarevic, I. and Kovacevic, M.S. (1996), "Analyzing applicability of existing classification for hard carbonate rock in Mediterranean area", Proceedings of the ISRM International Symposium - EUROCK'96, Turin, Italy.
  41. Jorda-Bordehore, L. (2017), "Application of Q slope to assess the stability of rock slopes in Madrid Province, Spain", Rock Mech. Rock Eng., 50, 1947-1957. https://doi.org/10.1007/s00603-017-1211-5.
  42. Jorda-Bordehore, L., Bar, N., Gonzalez, M.C., Gull, A.R. and Jover, R.T. (2018), "Stability assessment of rock slopes using empirical approaches: comparison between slope mass rating and Q-slope", In: Proceedings of the XIV International Congress on Energy Mineral Resources, Seville, Spain.
  43. Kang, S.S., Kim, H.Y. and Jang, B.A. (2013), "Correlation of in situ modulus of deformation with degree of weathering, RMR and Q-system", Environ. Earth Sci., 69(8), 2671-2678. https://doi.org/10.1007/s12665-012-2088-y.
  44. Khabbazi, A., Ghafoori, M., Lashkaripour, G.R. and Cheshomi, A. (2013), "Estimation of the rock mass deformation modulus using a rock classification system", Geomech. Geoeng., 8(1), 46-52. https://doi.org/10.1080/17486025.2012.695089.
  45. Kim, G. (1993), "Revaluation of geomechanics classification of rock masses", Proceedings of the Korean Geotechnical Society of Spring National Conference, Seoul.
  46. Kincal, C. and Koca, M.Y. (2019), "Correlations of in situ modulus of deformation with elastic modulus of intact core specimens and RMR values of andesitic rocks: a case study of the Izmir subway line", Bull. Eng. Geol. Environ., 78, 5281-5299. https://doi.org/1010.1007/s10064-018-01443-5.
  47. Kouhdaragh, M., Azarafza, M. and Derakhshani, R. (2022), "A Qslope-based empirical method to stability assessment of mountain rock slopes in multiple faults zone: A case for North of Tabriz", MethodsX, 9, 101718. https://doi.org/10.1016/j.mex.2022.101718.
  48. Liang, K.Y. and Zeger, S.L. (1993), "Regression analysis for correlated data", An. Rev. Public Health, 14(1), 43-68. https://doi.org/10.1146/annurev.pu.14.050193.000355
  49. Lindsay, P., Campbell, R.N., Fergusson, D.A., Gillard, G.R. and Moore, T.A. (2001), "Slope stability probability classification, Waikato Coal Measures, New Zealand", Int. J. Coal Geol., 45, 127-145. https://doi.org/10.1016/S0166-5162(00)00028-8
  50. Maion, A.V. (2019), Proposta de correlacao entre osindices SMR e Q-slope. MS thesis, Universidade de Sao Paulo, Brazil. (In Portuguese).
  51. Mao, Y., Chen, L., Nanehkaran, Y.A., Azarafza, M. and Derakhshani, R. (2023), "Fuzzy-based intelligent model for rapid rock slope stability analysis using Qslope", Water, 15(16), 2949. https://doi.org/10.3390/w15162949.
  52. McQuillan, A., Canbulat, I., Payne, D. and Oh, J. (2018), "New risk assessment methodology for coal mine excavated slopes", Int. J. Min. Sci. Technol., 28(4), 583-592. https://doi.org/10.1016/j.ijmst.2018.07.001.
  53. Mitri, H.S., Edrissi, R. and Henning, J. (1994), "Finite element modeling of cable-bolted stopes in hardrock underground mines", Proceedings of the SME Annual Meeting, Albuquerque, New Mexico.
  54. Montgomery, D.C., Peck, E.A. and Vining, G.G. (2021), Introduction to linear regression analysis. John Wiley & Sons, New Jersey, NY, USA.
  55. Nicholson, G.A. and Bieniawski, Z.T. (1990), "A nonlinear deformation modulus based on rock mass classification", Int. J. Min., 8, 181-202. https://doi.org/10.1007/BF01554041.
  56. Nogol-Sadat, M.A. and Almasian, A. (1993), Tectonic Map of Iran 1:1,000,000 Treatise on the Geology of Iran, Geological Survey of Iran, Tehran, Iran [in Persian].
  57. Palmstrom, A. (2005), "Measurements and correlations between block size and rock quality designation (RQD)", Tunn. Undergr. Space Technol., 20(4), 362-377. https://doi.org/10.1016/j.tust.2005.01.005.
  58. Palmstrom, A. and Singh, R. (2001), "The deformation modulus of rock masses - comparisons between in situ tests and indirect estimates", Tunn. Undergr. Space Technol., 16, 115-131. https://doi.org/10.1016/S0886-7798(01)00038-4.
  59. Patel, S. and Martin, C.D. (2018), "Evaluation of Tensile Young's Modulus and Poisson's Ratio of a Bi-modular Rock from the Displacement Measurements in a Brazilian Test", Rock Mech. Rock Eng., 51, 361-373. https://doi.org/10.1007/s00603-017-1345-5.
  60. Ramamurthy, T. (2004), "A geo-engineering classification for rocks and rock masses", Int. J. Rock Mech. Min. Sci., 41, 89-101. https://doi.org/10.1016/S1365-1609(03)00078-9.
  61. Read, S.A.L., Richards, L.R. and Perrin, N.D. (1999), "Applicability of the Hoek-Brown failure criterion to New Zealand greywacke rocks", In: Proceedings of the 9th International Congress on rock Mechanics, 2, 655-660.
  62. Robertson, A. (1988), "Estimating weak rock strength". In: Proceedings of SME Annual Meeting, Phoenix, Arizona.
  63. Romana, M., Seron, J.B. and Montalar, E. (2003), "SMR Geomechanics classification: Application, experience and validation", Proceedings of the 10th Congress of the ISRM 2003-Technology roadmap for rock mechanics, South African Institute of Mining and Metallurgy.
  64. Ryu, S. and Um, J.G. (2020), "Effect of joint geometry on anisotropic deformability of jointed rock masses", Econ. Environ. Geol., 53(3), 271-285.
  65. Sanei, M. and Faramarzi, L. (2014), "Empirical Development of the Rock Mass Deformation Modulus", J. Geol. Resource Eng., 2(1), 55-67. https://doi.org/10.17265/2328-2193/2014.01.006.
  66. Serafim, J.L. and Pereira, J.P. (1983), "Consideration of the geomechanics classification of Bieniawski", Proceedings of the Engineering Geology for Underground Construction.
  67. Shafiei, A. and Dusseault, M.B. (2008), "Geomechanical properties of a conglomerate from Iran", Proceedings of the 42nd US Rock Mechanics Symposium and 2nd U.S.-Canada Rock Mechanics Symposium, San Francisco, June 29-July 2.
  68. Shen, J., Karakus, M. and Xu, C. (2012), "A comparative study for empirical equations in estimating deformation modulus of rock masses", Tunn. Undergr. Sp. Tech., 32, 245-250. https://doi.org/10.1016/j.tust.2012.07.004.
  69. Siddique, T., Alam, M.M., Mondal, M.E.A. and Vishal, V. (2015), "Slope mass rating and kinematic analysis of slopes along the national highway-58 near Jonk, Rishikesh, India", J. Rock Mech. Geotech. Eng., 7(5), 600-606. https://doi.org/10.1016/j.jrmge.2015.06.007.
  70. Siddique, T., Pradhan, S.P., Vishal, V. and Singh, T.N. (2021), "Applicability of Q‑slope Method in the Himalayan Road Cut Rock Slopes and Its Comparison with CSMR", Rock Mech. Rock Eng., 53, 4509-4522. https://doi.org/10.1007/s00603-020-02176-2.
  71. Singh, B. and Goel, R.K. (2011), Engineering Rock Mass Classification: Tunneling, Foundations, and Landslides. Elsevier, Oxford, UK.
  72. Sonmez, H., Gokceoglu, C., Nefeslioglu, H.A. and Kayabasi, A. (2006), "Estimation of rock modulus: For intact rocks with an artificial neural network and for rock masses with a new empirical equation", Int. J. Rock Mech. Min. Sci., 43, 224-235. https://doi.org/10.1016/j.ijrmms.2005.06.007.
  73. Stead, D. and Wolter, A. (2015), "A critical review of rock slope failure mechanisms: The importance of structural geology", J. Struct. Geol., 74, 1-23. https://doi.org/10.1016/j.jsg.2015.02.002.
  74. Sullivan, T.D. (2013), "Global slope performance index", In: Proceedings of the Slope Stability, Brisbane, Sep. 2013. 
  75. Tomas, R., Delgado, J. and Seron, J.B. (2007), "Modification of slope mass rating (SMR) by continuous functions", Int. J. Rock Mech. Min. Sci., 44, 1062-1069. https://doi.org/10.1016/j.ijrmms.2007.02.004.
  76. Van, P. and Vasarhelyi, B. (2010), "Relation of rock mass characterization and damage", Proceedings of the Rock Engineering in Difficult Ground Conditions, Taylor and Francis.
  77. Vasarhelyi, B. and Kovacs, D. (2017), "Empirical methods of calculating the mechanical parameters of the rock mass", Periodica Polytechnica Civil Eng., 61(1), 39-50. https://doi.org/10.3311/PPci.10095.
  78. Verman, M., Singh, B., Viladkar, M.N. and Jethwa, J.L. (1997), "Effect of tunnel depth on modulus of deformation of rock mass", Rock Mech. Rock Eng., 30(3), 121-127. https://doi.org/10.1007/BF01047388.
  79. Wu, N., Liang, Z.Z., Li, Y.C., Li, H., Li, W.R. and Zhang, M.L. (2019), "Stress-dependent anisotropy index of strength and deformability of jointed rock mass: Insights from a numerical study", Bull. Eng. Geol. Environ., 78, 5905-5917. https://doi.org/10.1007/s10064-019-01483-5
  80. Zabihi Zoeram, F., Vahidinia, M., Sadeghi, A., Mahboubi, A. and Amiri Bakhtiar, H. (2015), "Larger benthic foraminifera: a tool for biostratigraphy, facies analysis and paleoenvironmental interpretations of the Oligo-Miocene carbonates, NW Central Zagros Basin, Iran", Arab. J. Geosci., 8, 931-949. https://doi.org/10.1007/s12517-013-1153-5
  81. Zhang, L. and Einstein, H.H. (2004), Estimating the deformation modulus of rock masses. Int. J. Rock Mech. Min. Sci., 41, 337-341. https://doi.org/10.1016/S1365-1609(03)00100-X.
  82. Zheng, J., Zhao, Y., Lu, Q., Deng, J., Pan, X. and Li, Y. (2016), "A discussion on the adjustment parameters of the Slope Mass Rating (SMR) system for rock slopes", Eng. Geol., 206, 42-49. https://doi.org/10.1016/j.enggeo.2016.03.007.