• Title/Summary/Keyword: System of equations

Search Result 4,585, Processing Time 0.028 seconds

LINEARLY INDEPENDENT SOLUTIONS FOR THE HYPERGEOMETRIC EXTON FUNCTIONS X1 AND X2

  • Choi, June-Sang;Hasanov, Anvar;Turaev, Mamasali
    • Honam Mathematical Journal
    • /
    • v.33 no.2
    • /
    • pp.223-229
    • /
    • 2011
  • In investigation of boundary-value problems for certain partial differential equations arising in applied mathematics, we often need to study the solution of system of partial differential equations satisfied by hypergeometric functions and find explicit linearly independent solutions for the system. Here we choose the Exton functions $X_1$ and $X_2$ among his twenty functions to show how to find the linearly independent solutions of partial differential equations satisfied by these functions $X_1$ and $X_2$.

A NEW PROJECTION ALGORITHM FOR SOLVING A SYSTEM OF NONLINEAR EQUATIONS WITH CONVEX CONSTRAINTS

  • Zheng, Lian
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.3
    • /
    • pp.823-832
    • /
    • 2013
  • We present a new algorithm for solving a system of nonlinear equations with convex constraints which combines proximal point and projection methodologies. Compared with the existing projection methods for solving the problem, we use a different system of linear equations to obtain the proximal point; and moreover, at the step of getting next iterate, our projection way and projection region are also different. Based on the Armijo-type line search procedure, a new hyperplane is introduced. Using the separate property of hyperplane, the new algorithm is proved to be globally convergent under much weaker assumptions than monotone or more generally pseudomonotone. We study the convergence rate of the iterative sequence under very mild error bound conditions.

A Study on Micro-step of 2-phase Hybrid Type Linear Stepping Motor (2상 하이브리드형 리니어 스텝핑 전동기의 미세스텝에 관한 연구)

  • Oh, Hong-Seok;Kim, Dong-Hui;Lee, Sang-Ho
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.5
    • /
    • pp.358-363
    • /
    • 2000
  • In this paper, a voltage equations, a thrust force equations and kinetic equation are derived from the basic structure of a 2-phase hybrid type linear stepping motor(HLSM). And a micro-stepping method in order to eliminate effectively the resonant phenomena and to increase the positional resolution of the HLSM was proposed. The proposed micro-stepping method can divide one step into the maximum 128 micro-steps under simple control system. The dynamic characteristics of proposed micro-stepping method were analyzed by the ACSL(Advanced Continuous Simulation Language) with the voltage equations, the thrust force equations and the kinetic equation, and were measured by laser experimental system. As the result, the justice of theory was confirmed, and the resonant phenomena, the positional resolution and dynamic thrust were improved by the proposed micro-stepping method.

  • PDF

A Numerical Method for Cam Synthesis (캠 합서에 관한 수치해석적 방법)

  • 심수섭;김창부
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.445-450
    • /
    • 2000
  • In this paper, a numerical method is proposed for cam synthesis. kinematics of closed loop system with cam and follower is presented using relative coordinates. The system is transformed into an open loop system by cutting fictitiously higher-pair contact of cam and follower and envelope constraint equations are derived. Follower constraint equations are derived from the motion of the follower ends. The joint variables and follower profile parameters are calculated from the envelope constraint equations and follower constraint equations by using the Newton - Raphson iterative method. Algorithms for cam synthesis are presented and simulations are done to verify the effectiveness of the proposed method.

  • PDF

Numerical Simulation of Turbine Cascade Flowfields Using Two Dimensional Compressible Navier-Stokes Equations (2차원 압축성 Navier-Stokes 방정식에 의한 터빈 익렬유동장의 수치 시뮬레이션)

  • Chung, H.T.;Kim, J.S.;Sin, P.Y.;Choi, B.S.
    • Journal of Power System Engineering
    • /
    • v.3 no.4
    • /
    • pp.16-21
    • /
    • 1999
  • Numerical simulation on two-dimensional turbine cascade flow has been performed using compressible Navier-Stokes equations. The flow equations are written in a cartesian coordinate system, then mapped into a generalized body-fitted ones. All direction of viscous terms are incoporated and turbulent effects are modeled using the extended ${\kappa}-{\epsilon}$ model. Equations are discretized using control volume SIMPLE algorithm on the nonstaggered grid sysetem. Applications are made at a VKI turbine cascade flow in atransonic wind-tunnel and compared to experimental data. Present numerical results are shown to be in good agreement with the experimental results and simulate the compressible viscous flow characteristics inside the turbine blade passage.

  • PDF

SYMMETRIES OF PARTIAL DIFFERENTIAL EQUATIONS

  • Gaussier, Herve;Merker, Joel
    • Journal of the Korean Mathematical Society
    • /
    • v.40 no.3
    • /
    • pp.517-561
    • /
    • 2003
  • We establish a link between the study of completely integrable systems of partial differential equations and the study of generic submanifolds in $\mathbb{C}$. Using the recent developments of Cauchy-Riemann geometry we provide the set of symmetries of such a system with a Lie group structure. Finally we determine the precise upper bound of the dimension of this Lie group for some specific systems of partial differential equations.

THREE-POINT BOUNDARY VALUE PROBLEMS FOR A COUPLED SYSTEM OF NONLINEAR FRACTIONAL DIFFERENTIAL EQUATIONS

  • Yang, Wengui
    • Journal of applied mathematics & informatics
    • /
    • v.30 no.5_6
    • /
    • pp.773-785
    • /
    • 2012
  • In this paper, we establish sufficient conditions for the existence and uniqueness of solutions to a general class of three-point boundary value problems for a coupled system of nonlinear fractional differential equations. The differential operator is taken in the Caputo fractional derivatives. By using Green's function, we transform the derivative systems into equivalent integral systems. The existence is based on Schauder fixed point theorem and contraction mapping principle. Finally, some examples are given to show the applicability of our results.

SOME EXPLICIT SOLUTIONS OF NONLINEAR EVOLUTION EQUATIONS

  • Kim, Hyunsoo;Lee, Youho
    • Honam Mathematical Journal
    • /
    • v.39 no.1
    • /
    • pp.27-40
    • /
    • 2017
  • In this paper, we construct exact traveling wave solutions of various kind of partial differential equations arising in mathematical science by the system technique. Further, the $Painlev{\acute{e}}$ test is employed to investigate the integrability of the considered equations. In particular, we describe the behaviors of the obtained solutions under certain constraints.

QUEUE LENGTH DISTRIBUTION IN A QUEUE WITH RELATIVE PRIORITIES

  • Kim, Jeong-Sim
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.1
    • /
    • pp.107-116
    • /
    • 2009
  • We consider a single server multi-class queueing model with Poisson arrivals and relative priorities. For this queue, we derive a system of equations for the transform of the queue length distribution. Using this system of equations we find the moments of the queue length distribution as a solution of linear equations.

Analysis of Stability for Overhead Crane Systems (천정 크레인시스템의 안정성 해석)

  • Ban Gab Su;Lee Kwang Ho;Mo Chang Ki;Lee Jong Gyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.4
    • /
    • pp.128-135
    • /
    • 2005
  • Overhead crane systems consist of trolley, girder, rope, objects, trolley motor, girder motor, and hoist motor. The dynamic system of these systems becomes a nonlinear state equations. These equations are obtained by the nonlinear equations of motion which are derived from transfer functions of driving motors and equations of motion for objects. From these state equations, Lyapunov functions of overhead crane systems are derived from integral method. These functions secure stability of autonomous overhead crane systems. Also constraint equations of driving motors of trolley, girder, and hoist are derived from these functions. From the results of computer simulation, it is founded that overhead crane systems is secure.