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LINEARLY INDEPENDENT SOLUTIONS FOR THE

HYPERGEOMETRIC EXTON FUNCTIONS X1 AND X2

Junesang Choi, Anvar Hasanov and Mamasali Turaev

Abstract. In investigation of boundary-value problems for certain
partial differential equations arising in applied mathematics, we
often need to study the solution of system of partial differential
equations satisfied by hypergeometric functions and find explicit
linearly independent solutions for the system. Here we choose the
Exton functions X1 and X2 among his twenty functions to show
how to find the linearly independent solutions of partial differential
equations satisfied by these functions X1 and X2.

1. Introduction and Preliminaries

Solutions of many applied problems involving thermal conductivity
and dynamics, electromagnetic oscillation and aerodynamics, quantum
mechanics and potential theory are obtainable with the help of hyperge-
ometric (higher and special or transcendent) functions [2, 3, 4, 5]. Func-
tions of such kind are often referred to as special functions of mathemat-
ical physics. They mainly appear in the solution of partial differential
equations which are dealt with harmonic analysis method (see [6]). In
view of various applications, it is interesting in itself and seems to be very
important to conduct a continuous research of multiple hypergeometric
functions. For instance, in [18], a comprehensive list of hypergeometric
functions of three variables as many as 205 is recorded, together with
their regions of convergence. It is noted that Riemann’s functions and
the fundamental solutions of the degenerate second-order partial differ-
ential equations are expressible by means of hypergeometric functions
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of several variables (see [7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 19, 20]).
Therefore, in investigation of boundary-value problems for these partial
differential equations, we need to study the solution of the system of hy-
pergeometric functions and find explicit linearly independent solutions
(see [12, 13, 14, 15, 16]).

Here, we choose the Exton functions X1 and X2 defined, respectively,
by the following triple series (see [10]):

X1 (a1, a2; c1, c2;x, y, z) =

∞∑
m,n,p=0

(a1)2m+2n+p (a2)p
(c1)m (c2)n+pm!n!p!

xmynzp (1.1)

and

X2 (a1, a2; c1, c2, c3;x, y, z) =
∞∑

m,n,p=0

(a1)2m+2n+p (a2)p
(c1)m (c2)n (c3)pm!n!p!

xmynzp

(1.2)
to find the linearly independent solutions of partial differential equa-
tions satisfied by these functions. The regions of convergence of these
functions X1 and X2 are given in [18].

2. The system of partial differential equations for X1

According to the theory of multiple hypergeometric functions (see
[1]), the system of partial differential equations for the Exton hyperge-
ometric function X1 is readily seen to be given as follows:
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where u = X1 (a, b; c1, c2, c3;x, y, z) .
Now by making use of some elementary calculations, we find the follow-
ing system of second order partial differential equations:

(2.2)



x (1− 4x)uxx − 8xyuxy − 4xzuxz − 4yzuyz − 4y
2
uyy − z2uzz + [c1 − 2 (2a1 + 3) x]ux

− 2 (2a1 + 3) yuy − 2 (a1 + 1) zuz − a1 (a1 + 1)u = 0

y (1− 4y)uyy − 4x
2
uxx − 8xyuxy − 4xzuxz + z (1− 4y)uyz − z2uzz − 2 (2a1 + 3) xux

+ [c2 − 2 (2a1 + 3) y]uy − 2 (a1 + 1) zuz − a1 (a1 + 1)u = 0

z (1− z)uzz − 2xzuxz + y (1− 2z)uyz − a22xux − 2a2yuy

+ [c2 − (a1 + a2 + 1) z]uz − a1a2u = 0.

It is noted that three equations of the system (2.2) are simultaneous,
because the hypergeometric function X1 satisfies the system. Now in
order to find the linearly independent solutions of the system (2.2) we
consider u as in the form u = xτyνzλw , where w is an unknown func-
tion, and τ , ν, and λ are constants which are to be determined. So,
substituting u = xτyνzλw into the system (2.2), we obtain



x (1− 4x)wxx − 8xywxy − 4xzwxz − 4yzwyz − 4y
2
wyy − z2wzz

+ {(2τ + c1)− 2 [2 (2τ + 2ν + λ+ a1) + 3] x}wx − 2 [2 (2τ + 2ν + λ+ a1) + 3] ywy

−2 [(2τ + 2ν + λ+ a1) + 1] zwz

−
{
−
τ (τ − 1 + c1)

x
+ (2τ + 2ν + λ+ a1) [(2τ + 2ν + λ+ a1) + 1]

}
w = 0

y (1− 4y)wyy − 4x
2
wxx − 8xywxy − 4xzwxz + z (1− 4y)wyz − z2wzz

−2 [2 (2τ + 2ν + λ+ a1) + 3] xwx + {(2ν + λ+ c2)− 2 [2 (2ν + 2τ + λ+ a1) + 3] y}wy

−
{
−
ν

y
+ 2 [(2τ + 2ν + λ+ a1) + 1]

}
zwz

−
{
−
ν (ν + λ− 1 + c2)

y
+ (2τ + 2ν + λ+ a1) [(2τ + 2ν + λ+ a1) + 1]

}
w = 0

z (1− z)wzz − 2xzwxz + y (1− 2z)wyz − 2 (λ+ a2) xwx +

[
λ

z
− 2 (λ+ a2)

]
yuy

+ {(ν + 2λ+ c2)− [(2τ + 2ν + λ+ a1) + (λ+ a2) + 1] z}wz

−
{
λ (ν + λ− 1 + c2)

z
+ (2τ + 2ν + λ+ a1) (λ+ a2)

}
w = 0.

(2.3)

It is noted that the system (2.3) is analogical to the system (2.2).
Therefore, it is required that the following conditions should be satisfied:

(2.4)



τ (τ − 1 + c1) = 0

ν = 0

ν (ν + λ− 1 + c2) = 0

λ = 0

λ (ν + λ− 1 + c2) = 0.
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It is not difficult to see that the system (2.4) satisfies the following
solutions:

1 2

τ :
ν :
λ :

0
0
0

1 − c1
0
0

(2.5)

Finally, substituting 2 solutions of the system (2.4) into (2.3), we find
the following linearly independent solutions of the system (2.2):

u1 = X1 (a1, a2; c1, c2;x, y, z) , (2.6)

u2 = x1−c1X1 (2 − 2c1 + a1, a2; 2 − c1, c2;x, y, z) . (2.7)

Therefore, it is seen that the global solution of the system (2.2) is com-
bined to be in the form

u = k1u1 + k2u2 (2.8)

where ki (i = 1, 2) are constants.

3. The system of partial differential equations for X2

By using the same method as in Section 2, we obtain the following
system of partial differential equations satisfied by the Exton function
X2:

(3.1)



x (1− 4x)uxx − 4y
2
uyy − z2uzz − 8xyuxy − 4xzuxz − 4yzuyz+

[c1 − 2 (2a1 + 3) x]ux − 2 (2a1 + 3) yuy − 2 (a1 + 1) zuz − a1 (a1 + 1)u = 0

y (1− 4y)uyy − 4x
2
uxx − z2uzz − 8xyuxy − 4xzuxz − 4yzuyz+

[c2 − 2 (2a1 + 3) y]uy − 2 (2a1 + 3) xux − 2 (a1 + 1) zuz − a1 (a1 + 1)u = 0

z (1− z)uzz − 2xzuxz − 2yzuyz + [c3 − (a1 + a2 + 1) z]uz

− 2a2xux − 2a2yuy − a1a2u = 0,

where

u = X2 (a1, a2; c1, c2, c3;x, y, z) .

Now in order to find the linearly independent solutions of the system
(3.1) we consider u as in the form u = xτyνzλw , where w is an unknown
function, and τ , ν, and λ are constants which are to be determined. So,
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substituting u = xτyνzλw into the system (3.1), we obtain

x (1− 4x)wxx − 4y
2
wyy − z2wzz − 8xywxy − 4xzwxz − 4yzwyz

+ {2τ + c1 − 2 [2 (2τ + 2ν + λ+ a1) + 3] x}wx − 2 [2 (2τ + 2ν + λ+ a1) + 3] ywy

−2 [(2τ + 2ν + λ+ a1) + 1] zwz

−
{
−τ (τ − 1 + c1) x

−1
+ (2τ + 2ν + λ+ a1) [(2τ + 2ν + λ+ a1) + 1]

}
w = 0

y (1− 4y)wyy − 4x
2
wxx − z2wzz − 8xywxy − 4xzwxz − 4yzwyz

+ {2ν + c2 − 2 [2 (2ν + 2τ + λ+ a1) + 3] y}wy − 2 [2 (2τ + 2ν + λ+ a1) + 3] xwx

−2 [(2τ + 2ν + λ+ a1) + 1] zwz

−
{
−ν (ν − 1 + c2) y

−1
+ (2τ + 2ν + λ+ a1) [(2τ + 2ν + λ+ a1) + 1]

}
w = 0

z (1− z)wzz − 2xzwxz − 2yzwyz + {2λ+ c3 − [(2τ + 2ν + λ+ a1) + (λ+ a2) + 1] z}wz

−2 (λ+ a2) xwx − 2 (λ+ a2) ywy −
[
−λ (λ− 1 + c3) z

−1
+ (2τ + 2ν + λ+ a1) (λ+ a2)

]
w = 0.

(3.2)

Naturally, it is required that the following conditions should be satisfied: τ (τ − 1 + c1) = 0
ν (ν − 1 + c2) = 0
λ (λ− 1 + c3) = 0.

(3.3)

It is readily seen that the system (3.3) has the following eight solutions:

1 2 3 4 5 6 7 8

τ :
ν :
λ :

0
0
0

1 − c1
0
0

0
1 − c2

0

0
0

1 − c3

1 − c1
1 − c2

0

1 − c1
0

1 − c3

0
1 − c2
1 − c3

1 − c1
1 − c2
1 − c3

(3.4)
Furthermore, substituting 8 solutions of the system (3.4) into the system
(3.2), we get the following linearly independent solutions:

u1 = X2 (a1, a2; c1, c2, c3;x, y, z) , (3.5)

u2 = x1−c1X2 (2 − 2c1 + a1, a2; 2 − c1, c2, c3;x, y, z) , (3.6)

u3 = y1−c2X2 (2 − 2c2 + a1, a2; c1, 2 − c2, c3;x, y, z) , (3.7)

u4 = z1−c3X2 (1 − c3 + a1, 1 − c3 + a2; c1, c2, 2 − c3;x, y, z) , (3.8)

u5 = x1−c1y1−c2X2 (4 − 2c1 − 2c2 + a1, a2; 2 − c1, 2 − c2, c3;x, y, z) , (3.9)

u6 = x1−c1z1−c3X2 (3 − 2c1 − c3 + a1, 1 − c3 + a2; 2 − c1, c2, 2 − c3;x, y, z) ,
(3.10)

u7 = y1−c2z1−c3X2 (3 − 2c2 − c3 + a1, 1 − c3 + a2; c1, 2 − c2, 2 − c3;x, y, z) ,
(3.11)

u8 = x
1−c1y

1−c2z
1−c3X2 (5− 2c1 − 2c2 − c3 + a1, 1− c3 + a2; 2− c1, 2− c2, 2− c3; x, y, z) .

(3.12)

Thus, the global solution of the system for the Exton function X2 is
presented in the following form:

u =
8∑
j=1

kjuj , (3.13)
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where ki (i = 1, 2, . . . , 8) are constants.
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