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QUEUE LENGTH DISTRIBUTION IN
A QUEUE WITH RELATIVE PRIORITIES

JEONGSIM KIM

ABSTRACT. We consider a single server multi-class queueing model with
Poisson arrivals and relative priorities. For this queue, we derive a system
of equations for the transform of the queue length distribution. Using this
system of equations we find the moments of the queue length distribution
as a solution of linear equations.

1. Introduction

We consider a multi-class queueing model with relative priorities. In the
relative priority service discipline for a single server (processor) system with K
classes of customers, if at some service completion there are n; customers of

class j, 7 = 1,..., K, then the next customer to commence service is selected
from class ¢ customers with probability
s
—P i1, K.
21 yD;

Once a customer has started service, it is served without interruption until
completion.

Relative priority model is related to the well-known model of discriminatory
processor sharing (DPS), see the recent survey [1]. An essential difference with
DPS is that for DPS all customers in the system are served simultaneously
by a single processor, whereas in relative priority model, the processor serves
customers one at a time until their service has been completed.

A single server multi-class queueing model with relative priorities was first
suggested in [2]. For the analysis of queueing model with relative priorities
it seems that Haviv and van der Wal [3] is the only known result in open
literatures. Haviv and van der Wal [3] obtained the mean waiting times for the
M/G/1 queue with relative priorities.
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In this paper we consider a single server multi-class queueing model with
Poisson arrivals and relative priorities. For this queue, we derive a system of
equations for the transform of the queue length distribution. Using this system
of equations we find the moments of the queue length distribution as a solution
of linear equations. Besides, numerical examples are given.

2. Transform of the queue length distribution

We consider an M/G/1 queue with relative priorities and K classes of cus-
tomers. Each class i customer has a positive priority parameter p;,i =1,..., K.
Customers of class 7 arrive in a Poisson stream with rate A;. The overall arrival
rateis A = Zfil A;. The service times of class 7 customers, denoted by random
variable X;, have an identical distribution function B;(t) with Laplace-Stietjes
transform B} (s) = [, e~**dB;(t). The traffic intensity for class i customer is
pi = ME[X;] and the total traffic intensity is p = E;il Pj-

Let N;(t), i =1,..., K, be the number of class i customers in the system at
time {. Let 7, be the nth departure epoch. Then {(N1(Tp+),..., Nx(Tn+)) :
n=1,2,...} is a Markov chain, called an embedded Markov chain (EMC). We
observe that

P((N1(Tas1+), - - s Ne(Trg1+))
= (ll"' '7lK) | (Nl(Tn+),...,NK(Tn+)) = (nl,...,nK))

if (n1,...,nx) =(0,...,0),

Zilil mﬁin;mbz ((ll,,lK) - (nl,...,TLK)+ 12)
if (n1,...,nKx)#(0,...,0),

where

0 if (h,...,lx) = (0,...,0),
bi(li,...,lx) = oo U A
i(h ©) {fo e"‘ti—%ﬁ;—dej(t) otherwise,

which is the probability that the number of each class ¢ customer which arrives
during the service time of class j customer, is I;, ¢ = 1,..., K. Further, 1,
denotes a K-dimensional row vector whose ith component is 1 and all other
components are 0.

It can be shown that the EMC is positive recurrent if and only if p < 1. We
assume p < 1. Let w(ly,...,lx) be the stationary distribution of the EMC:

7T(ll,. . .,lK) = nlLII;oIP((Nl(Tn+), .. .,NK(Tn-I-)) = (ll,. . .,lK)) .

Let us denote by II(z1,..., zx) the probability generating function of w(ly, ...,
lk):

e o} o
(2) H(zl,.‘.,zK)EZ~-~Zﬂ(ll,...,lK)zlll---z%‘.

;=0 lg=0



QUEUE LENGTH DISTRIBUTION IN A QUEUE WITH RELATIVE PRIORITIES 109

From (1), we have
H(Zl,' . '7ZK)

Z B*/\ ZAZJ +Z Z m(ni,...,nK)

(3) (n1seesm 1 )2(0,-.-,0)
K nip;
1 ni ni—1 NK p*
X _5_ 2yt ez 2K B g AjZj
“~ mp1+ -+ nKPK ! ¢ K 2

Since equation (3) is somewhat cumbersome to work with dlrectly, we define

w(ly, .., lk) . l
R VP>
15,15 )#(0,...,0) l1p1 + -+ lxpk
Further, we note that
(5) W(O,...,O):l_p

In the following theorem we have a system of equations for the probability
generating function of the queue length distribution.

Theorem 1. (a) I(z1,...,2K) and r(z1,...,2K) are related by
9
(6) H(le'-azK)_l—p"_Zlezzzal (zl’ '-7ZK)'

(b) r(z1,...,2K) satisfies

K K 0
;pi zi— BY (A — ];Ajzj) a—%r(zl, O ZK)
(7)

=(p-1|1 —ZfBZ(A—Z/\ij)
i=1 j=1

Proof. Part (a) is immediate from (2), (4) and (5). Now, by using (4) and (5),
we can rewrite (3) as

K Y K
ar,oom) = (1= ) 30 FEI =D %%)
i=1 j=1
K
+sz r(z1,...,2)Bf (A=Y Niz).
j=1

Z
Part (b) follows immediately from substituting (6) into the above equation. U

Note that the equation (7) reduces to

1—
H(Zl,...,ZK)z 1_;,
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which is the probability generating function of the queue length in the ordinary
M/M/1 queue.

Theorem 1 helps us obtain the moments of the queue length for the M/G/1
queue with relative priorities, as we see in the following section.

3. Moments of the queue length distribution

In this section we show how to obtain the first and second moments of the
queue length. To do this, we define the following moments:

: &
J —
Liy"-ij = —_—8 0z H(Z},...,,ZK) ,
27’1 zzj z21==zg=1
‘ i
J J—
. = ——————-———“*T(Zl ZK)
11701 ) .. . * b *
J 3211 (9Z¢j 2p= =z =1

where j =1,2,...,1 <4 < Kand 1< <j. Wealso define, for 1 <l <,

Gkt .
R’iy"iji (2‘11’ rr 71‘lk)

a,’f—k-l—l

(zl,...,zK) N

P
82@1 A 8z,-ll_lazih“ e 82’@%._18%%4‘1 e Bzz-j 82,’ a1

which means that we take partial derivatives with respect to variables z;,,.. .,
Zi;, Zi €XCEPt Ziy 5. . .5 2y, - For example,

&
'r(zl,...,zK)

RI () =
ey
A 321'1 v Bzél_lﬁzml s Bzij(‘?zz

2i=e=zp=1

More specifically, R3g36(2) = Risq, R%3(2) = R%;, R146(2,4) = Ri. We have
the following relations on the moments of the queue length.

Theorem 2. Forj=1,2,.., 1<y <K and1 <1<y,

K J
) 1 .
(8) Lfl...ij = szR'Zl@ﬂ -+ Zpilel...ija
i=1 =1

and

] K J
i z o ikl ;
an Rh---ij - Z Z pi@i,zll "’ZlkRilmij'é ('Lll saney Zék)
=1 i=1

©) k=1 1<l < <lp<j

K\
= (1-p) Z j\z‘tbz’,il...iw
i=1
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where ¢; i, ..., s given by
ok
Biiy i —B/(A— E)\z
7,311k J
0z, -+ Oz,

21=mzpe=1

I

= Ay MLECK),

Proof. The equation (8) is derived by taking partial derivatives of (6) with
respect to 2iy, 24y, - - -, 2;; and evaluating at z; = --- = zx = 1. Now we derive
(9). For notational convenience, we set in equation (7)

K
Li(z1,.. . 2x) =pi | 2 — Bf (A — ZAjzj)

Note that I;(1,...,1) = 0. By taking partial derivatives of (7) with respect to

ZiysZigs -+, 2i; and evaluating at 2y = -+ = zx = 1, we have

(10)
U 8k Jj—k+1 .
ZZ Z W (21,...,21() R“ zz(”l""’“k)
i=1 k=1 1<l <--<lp<j ! i z==z2g=1

K\
-p) Z j\‘lﬁbi,il.--ij.
i=1

Observe that for & = 1, the left hand side of (10) becomes

J K J
Z pillel“'ij - Z Z pi(pi’ihRglmiji(ill)’

l1=1 i=111=1

and for k > 2,

ZZJ o k1
2 : J—k+ ;
—.az;c-ji(zlv ce 7Zk) : Rzl “igi (“17 ”k)

0z, -+
i=1 k=2 1<li<<lp<j ==z =1

K J
ZZ Z pi¢i7ill - RJ k+1(7’l17 Zlk)

i=1 k=2 1<ly<-<lx<j

Combining the above two equations, we can rewrite (10) as (9). This finishes
the derivation of (9). O

Now we describe in detail how to calculate the first and second moments of
the queue length. From (9) with j = 1, a system of linear equations for R},
1 <k < K, is given as follows:

K
(11) kak )\k sz Rl

i=1

iic(l—p)p, k=1,... K.
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From (9) with j = 2, a system of linear equations for R%,, 1 < k,l < K, is
given as follows:

(12)
K K K
(px +P)RY — Ae Y piE(X)R], — N > pB(Xi)RE, — \eh > piE(X7)R]
i=1 i=1 =1
M = 2
=(1-p) =" D ME(XD), 1<Sk<ISK.
i=1

From (9) with j = 3, a system of linear equations for R}, , 1 <k,l,m < K, is
given as follows:

(13)
K K
(Pk + Pt + Pm) B, — M D piE(Xi)Ri — M > piB(Xi)RY s
i=1 i=1
K K K
= Am Y PEX)RY; — MY pE(XP) RS, — MAm Y piE(X2) R,
=1 =1 i=1

K K
= AmAk O PEXDRE — MAidm Y piE(XP)R]

=1 i=1

AN Am —
=(1—p)k)l‘m§/\i]E(Xf'), 1<k<l<m<K.
=1

Thus we can obtain the first and second moments of the queue length as follows.
Using (11), we first obtain R, k = 1,..., K. Secondly, we obtain RZ;, k,l =
1,..., K, by solving the system of linear equations (12). Lastly, we obtain the

mean queue length Li, k=1,..., K, from
K
(14) Li, =) piR} + peRy
i=1
by (8). Then, solving the system of linear equations (13) yields R}, k,[,m =
1,..., K. Similarly, we obtain the second moment L%l, kil=1,...,K, from
K
(15) Ly =) piRY + peRy + piRY
i=1
by (8).

In summary, we have the following procedure for the first and second mo-
ments of the queue length.

Procedure for the first and second moments of the queue length
1. Calculate R, k =1,..., K, by solving (11).
2. Calculate RZ,, k,l=1,..., K, by solving (12).
3. Calculate the mean queue length L}, k =1,..., K, by (14).
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4. Calculate R, , k,I,m=1,...,K, by solving (13).
5. Calculate the second moment of the queue length L%l, kil=1,...,K,
by (15).
Remark. In a similar manner we can obtain the higher moments of the queue
length by using the equations (8) and (9).

4. Numerical examples

In this section we present some numerical examples to compute the mean,
variance and squared coeflicient of variation of the queue length. We consider
the case of K = 2 customer classes with priority parameters p; and p,. We
assume equal loads of p; = po = 0.35, and hence p = 0.7.

Mean queus length

04 . , .
107 107% 10" 10° 10" 10° 10°

PPy

FIGURE 1. Mean queue length for Example 1.

Variance of queus length
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FIGURE 2. Variance of queue length for Example 1.
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Squared coefficient of variation of queus length
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FIGURE 3. Squared coefficient of variation of queue length for
Example 1.
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Mean queue length
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FIGURE 4. Mean queue length for Example 2.

Example 1. We assume that the service times of customers in each class have
exponential distribution with density b(t) = e~*. Hence A\; = A2 = 0.35.

Figs. 1-3 show the mean, variance and squared coefficient of variation for the
queue length of each class, respectively, varying the priority parameter ratio
p2/p1. We observe, as expected, that in the case of po/p1 = 1, the mean,
variance and squared coefficient of variation for the queue length of class 1
customer equal to those of class 2 customer. It is also observed that the curves
in each figure are symmetric with respect to the vertical line passing through
p2/p1 = 1, as expected. From Figs. 1 and 2, we see, as expected, that the mean
and variance of the queue length of class 1 customer (resp. class 2 customer)
increase (resp. decrease) as the priority parameter ratio p2/p, increases.
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FI1GURE 6. Squared coeflicient of variation of queue length for

Example 2.

115

Example 2. We assume that the service times of class 1 and class 2 customers
have exponential distributions with densities b(t) = e~* and b(t) = 4e=%,

respectively. Hence Ay = 0.35 and \; = 1.4.

In Figs. 4-6, we plot the mean, variance and squared coefficient of variation
for the queue length of each class, respectively, varying the priority parameter
ratio p2/p;1. Asillustrated in Figs. 4 and 5, the mean and variance of the queue
length of class 1 customer (resp. class 2 customer) increase (resp. decrease) as
the priority parameter ratio py/p; increases, as we expect. Further, the mean
and variance of the queue length of class 2 customer are larger than those of
class 1 customer. Fig. 6 illustrates that the squared coefficient of variation of
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the queue length of class 2 customer is less affected by the priority parameter
ratio pa/p1.

References

[1] E. Altman, A. Avrachenkov, and U. Ayesta, A survey on discriminatory processor shar-
ing, Queuneing Syst. 53 (2006), no. 1-2, 53-63.

[2] M. Haviv and J. van der Wal, Equilibrium strategies for processor sharing and random
queues with relative priorities, Probab. Eng. Inform. Sei. 11 (1997), no. 4, 403-412.

, Waiting times in queues with relative priorities, Oper. Res. Lett. 35 (2007), no.

5, 591-594.

(3]

DEPARTMENT OF MATHEMATICS EDUCATION
CHUNGBUK NATIONAL UNIVERSITY

CHEONGJU 361-763, KOREA

E-mail address: jeongsimkim@chungbuk.ac.kr



