• Title/Summary/Keyword: System of equations

Search Result 4,588, Processing Time 0.033 seconds

A Derivation of Sensitivity Equations of the Error Components to Analyze Performance in the Direct Fire Control System (직사화기 성능분석을 위한 오차요소별 민감도 식 유도)

  • Kim, Jaehun;Kim, Euiwhan;Lee, Jeongyeob;Kim, Gunkook
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.4 no.12
    • /
    • pp.399-408
    • /
    • 2015
  • In the direct Gun Fire Control System(GFCS), it is essential to analyze the impact of the specific error components on the hit probability to optimize the system design. For this purpose the sensitivity equations of these error components are conveniently used, but it is too difficult to get those equations for the complex system with too many system elements. Normally sensitivity analysis is performed using numerical and statistical methods for the ground combat system. This method requires much computation, and makes us difficult to estimate the sensitivity change of specific error component intuitionally for the changing operating conditions. In this paper we propose a set of sensitivity equations deriving from closed form solution of the ballistic differential equation for the bullet. They are handy equations with very little computations, easy to understand the physical meaning of the related system variables. Some simulation results are shown to demonstrate usefulness of our algorithm for the 30mm projectile.

CONTROLLABILITY OF STOCHASTIC FUNCTIONAL INTEGRODIFFERENTIAL EVOLUTION SYSTEMS

  • Kokila, J.;Balachandran, K.
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.3_4
    • /
    • pp.587-601
    • /
    • 2011
  • In this paper, we prove the existence and uniqueness of mild solution for stochastic functional integrodifferential evolution equations and derive sufficient conditions for the controllability results. As an illustration we consider the controllability for a system governed by a random motion of a string.

The Origin and Recent History for Fuzzy Equations

  • Park, Q-Heung;Lee, Sunyoung
    • Journal for History of Mathematics
    • /
    • v.16 no.2
    • /
    • pp.117-128
    • /
    • 2003
  • We investigate the origin and recent history for fuzzy equations. And we introduce the existence theorems of solutions for the fuzzy differential equation with infinite delays and fuzzy functional integral equations. We will also recent researches for controllability of sobolev-type semilinear integro-differential fuzzy system.

  • PDF

THE INSTABILITY FOR FUNCTIONAL DIFFERENTIAL EQUATIONS

  • Ko, Young-Hee
    • Journal of the Korean Mathematical Society
    • /
    • v.36 no.4
    • /
    • pp.757-771
    • /
    • 1999
  • We consider a system of functional differential equations x'(t)=F(t, $x_t$) and obtain conditions on a Liapunov functional and a Liapunov function to ensure the instability of the zero solution.

  • PDF

Multiple Noise Analysis and Derivation of Noise Prediction Equations for Shelter System (쉘터시스템 복합소음분석 및 소음예측수식 유도)

  • Cho, Jae-sang;Lee, Sock-kyu;Baek, In-gi;Kim, Sang-hyun;Lee, Jeung;Choi, Ji-ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.5
    • /
    • pp.616-624
    • /
    • 2016
  • Design of shelter system requires consideration of noise at operators’ positions, because noise can injure person’s health. That is why studies which analyze and predict noise at operator’s positions is essential. To analyze noise sources of shelter system, this study measured noise of each equipment and obtained new equations by comparing the measured noise data and the equation which is relation noise and distance. The new equations predict noise level at operators’ positions. Actran analysis is performed to obtain noise level at operators’ positions too. At last, the noise level at operators’ positions measured in real shelter system is compared with the noise level predicted the new equations and Actran analysis.

A Computer Method for the Dynamic Analysis of a System of Rigid Bodies in Plane Motion

  • Attia, Hazem-Ali
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.193-202
    • /
    • 2004
  • This paper presents a computer method for the dynamic analysis of a system of rigid bodies in plane motion. The formulation rests upon the idea of replacing a rigid body by a dynamically equivalent constrained system of particles. Newton's second law is applied to study the motion of the resulting system of particles without introducing any rotational coordinates. A velocity transformation is used to transform the equations of motion to a reduced set. For an open-chain, this process automatically eliminates all of the non-working constraint forces and leads to an efficient integration of the equations of motion. For a closed-chain, suitable joints should be cut and few cut-joints constraint equations should be included. An example of a closed-chain is used to demonstrate the generality and efficiency of the proposed method.

VARIATIONAL APPROACH AND THE NUMBER OF THE NONTRIVIAL PERIODIC SOLUTIONS FOR A CLASS OF THE SYSTEM OF THE NONTRIVIAL SUSPENSION BRIDGE EQUATIONS

  • Jung, Tack-Sun;Choi, Q-Heung
    • The Pure and Applied Mathematics
    • /
    • v.16 no.2
    • /
    • pp.199-212
    • /
    • 2009
  • We investigate the multiplicity of the nontrivial periodic solutions for a class of the system of the nonlinear suspension bridge equations with Dirichlet boundary condition and periodic condition. We show that the system has at least two nontrivial periodic solutions by the abstract version of the critical point theory on the manifold with boundary. We investigate the geometry of the sublevel sets of the corresponding functional of the system and the topology of the sublevel sets. Since the functional is strongly indefinite, we use the notion of the suitable version of the Palais-Smale condition.

  • PDF

ON CONSTANT-SIGN SOLUTIONS OF A SYSTEM OF DISCRETE EQUATIONS

  • Agarwal, Ravi-P.;O'Regan, Donal;Wong, Patricia-J.Y.
    • Journal of applied mathematics & informatics
    • /
    • v.14 no.1_2
    • /
    • pp.1-37
    • /
    • 2004
  • We consider the following system of discrete equations $u_i(\kappa)\;=\;{\Sigma{N}{\ell=0}}g_i({\kappa},\;{\ell})f_i(\ell,\;u_1(\ell),\;u_2(\ell),\;{\cdots}\;,\;u_n(\ell)),\;{\kappa}\;{\in}\;\{0,\;1,\;{\cdots}\;,\;T\},\;1\;{\leq}\;i\;{\leq}\;n\;where\;T\;{\geq}\;N\;>\;0,\;1\;{\leq}i\;{\leq}\;n$. Existence criteria for single, double and multiple constant-sign solutions of the system are established. To illustrate the generality of the results obtained, we include applications to several well known boundary value problems. The above system is also extended to that on $\{0,\;1,\;{\cdots}\;\}\;u_i(\kappa)\;=\;{\Sigma{\infty}{\ell=0}}g_i({\kappa},\;{\ell})f_i(\ell,\;u_1(\ell),\;u_2(\ell),\;\cdots\;,\;u_n(\ell)),\;{\kappa}\;{\in}\;\{0,\;1,\;{\cdots}\;\},\;1\;{\leq}\;i\;{\leq}\;n$ for which the existence of constant-sign solutions is investigated.

Stochastic Responses of a Spring-Pendulum System under Narrow Band Random Excitation (협대역 불규칙가진력을 받는 탄성진자계의 확률적 응답특성)

  • Cho, Duk-Sang
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.4 no.2
    • /
    • pp.133-139
    • /
    • 2001
  • The nonlinear response statistics of an spring-pendulum system with internal resonance under narrow band random excitation is investigated analytically- The center frequency of the filtered excitation is selected to be close to natural frequency of directly excited spring mode. The Fokker-Planck equations is used to generate a general first-order differential equation in the dynamic moment of response coordinates. By means of the Gaussian closure method the dynamic moment equations for the random responses of the system are reduced to a system of autonomous ordinary differential equations. The nonlinear phenomena, such as jump and multiple solutions, under narrow band random excitation were found by Gaussian closure method.

  • PDF

ANALYSIS OF FIRST-ORDER SYSTEM LEAST-SQUARES FOR THE OPTIMAL CONTROL PROBLEMS FOR THE NAVIER-STOKES EQUATIONS

  • Choi, Young-Mi;Kim, Sang-Dong;Lee, Hyung-Chun;Shin, Byeong-Chun
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.11 no.4
    • /
    • pp.55-68
    • /
    • 2007
  • First-order least-squares method of a distributed optimal control problem for the incompressible Navier-Stokes equations is considered. An optimality system for the optimal solution are reformulated to the equivalent first-order system by introducing velocity-flux variables and then the least-squares functional corresponding to the system is defined in terms of the sum of the squared $L^2$ norm of the residual equations of the system. The optimal error estimates for least-squares finite element approximations are obtained.

  • PDF