• Title/Summary/Keyword: System of Rigid Bodies

Search Result 86, Processing Time 0.02 seconds

Multibody models with flexible components for inflatable space structures

  • Petrolo, Marco;Governale, Giorgio;Catelani, Daniele;Carrera, Erasmo
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.6
    • /
    • pp.653-669
    • /
    • 2018
  • This work has the objective to analyze multibody mechanisms of inflatable structures for manned space applications. The focus is on the evaluation of the main characteristics of MaxFlex, a new module of MSC Adams including the effect of nonlinear flexible bodies. MaxFlex integrates the nonlinear Finite Element Analysis (FEA) of Nastran-SOL400-and the Adams multibody capabilities in one unique solver, providing an improvement concerning the concept and technology based on the co-simulation among solvers. MaxFlex converts the equations of motion of the nonlinear FEA into phase-space form and discretizes them according to the multibody system integrator framework. The numerical results deal with an inflatable manned space module having rigid components and a flexible coating made of Kevlar. This paper is a preliminary assessment of the computational capabilities of the software and does not provide realistic guidelines for the actual design of the structure. The analysis leads to some recommendations related to the main issues to consider in a nonlinear simulation including both rigid and flexible components. The results underline the importance of realistic deployment times and applied forces. Also, a proper structural modeling is necessary, but can lead to excessive computational overheads.

Three-Dimensional Sheet Modeling Using Relative Coordinate (상대 좌표를 이용한 종이류 모델링 기법)

  • Cho Heui Je;Bae Dae Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.2 s.233
    • /
    • pp.247-252
    • /
    • 2005
  • This research presents a three-dimensional modeling technique for a flexible sheet. A relative coordinate formulation is used to represent the kinematics of the sheet. The three-dimensional flexible sheet is modeled by multi-rigid bodies interconnected by out-of-plane joints and plate force elements. A parent node is designated as a master body and is connected to the ground by a floating joint to cover the rigid motion of the flexible sheet in space. Since the in-plane deformation of a sheet such as a paper and a film is relatively small, compared to out-of-plane deformation, only the out-of-plane deformation is accounted for in this research. The recursive formulation has been adopted to solve the equations of motion efficiently. An example is presented to show the validity of the proposed method.

Thermoelastic Instability of the Layer Sliding between Two Rigid Non-conducting Half-planes (단단한 비전도 반평판 사이에서 미끄럼 운동하는 평판층의 열탄성 불안정성)

  • 오재응;하태원;조용구;김흥섭;이정윤
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.114-121
    • /
    • 2004
  • Frictional heating in brakes causes thermoelastic distortion of the contacting bodies and hence affects the contact pressure distribution. The resulting thermo-mechanical coupling can cause thermoelastic instability (TEI) if the sliding speed is sufficiently high, leading to non-uniform heating called hot spots and low frequency vibration known as hot judder. The vibration of brakes to the known phenomenon of frictionally-excited thermoelastic instability is estimated studying the interface temperature and pressure evolution with time. A simple model has been considered where a layer with half-thickness$\alpha$slides with speed V between two half-planes which are rigid and non-conducting. The advantage of this properlysimple model permits us to deduce analytically the critical conditions for the onset of instability, which is the relation between the critical speed and the growth rate of the interface temperature and pressure. Symmetrical component of pressure and temperature distribution at the layer interfaces can be more unstable than antisymmetrical component. As the thickness $\alpha$ reduces, the system becomes more apt to thermoelastic instability. For perturbations with wave number smaller than the critical$m_{cr}$ the temperature increases with m vice versa for perturbations with wave number larges than $m_{cr}$ , the temperature decreases with m.

An Instrumented Workstation to Evaluate Weight-Bearing Distribution in the Sitting Posture

  • Moriguchi, Cristiane S.;Sato, Tatiana O.;Coury, Helenice J.C.G.
    • Safety and Health at Work
    • /
    • v.10 no.3
    • /
    • pp.314-320
    • /
    • 2019
  • Background: Sitting posture may be related to risk factors, including inadequate weight-bearing support, particularly when maintained for long periods. Considering that body weight is loaded in a closed support system composed of the seat, backrest, floor and working surface, the aims of the present study were to describe the development of an ergonomic sitting workstation to continuously record weight-bearing at the seat, chair, backrest, work surface, and floor and to test its measurement properties: reproducibility, criterion-related validity, and sensitivity. Methods: Rigid bodies (1 to 30 kg) and participant weights were recorded to evaluate the workstation measurement properties. Results: Rigid body tests showed variation values less than 0.050 kg on reproducibility test and errors below 5% of measured value on criterion validity tests. Participant tests showed no statistically significant differences between repeated measures ($p{\geq}0.40$), errors were less than 2% of participant weights an sensitivity presented statistically significant changes (p = 0.007). Conclusion: The sitting workstation proposed showed to be reliable, valid and sensitive for use in future ergonomic studies to evaluate the sitting posture.

Dynamic analysis of guideway structures by considering ultra high-speed Maglev train-guideway interaction

  • Song, Myung-Kwan;Fujino, Yozo
    • Structural Engineering and Mechanics
    • /
    • v.29 no.4
    • /
    • pp.355-380
    • /
    • 2008
  • In this study, the new three-dimensional finite element analysis model of guideway structures considering ultra high-speed magnetic levitation train-bridge interaction, in which the various improved finite elements are used to model structural members, is proposed. The box-type bridge deck of guideway structures is modeled by Nonconforming Flat Shell finite elements with six DOF (degrees of freedom). The sidewalls on a bridge deck are idealized by using beam finite elements and spring connecting elements. The vehicle model devised for an ultra high-speed Maglev train is employed, which is composed of rigid bodies with concentrated mass. The characteristics of levitation and guidance force, which exist between the super-conducting magnet and guideway, are modeled with the equivalent spring model. By Lagrange's equations of motion, the equations of motion of Maglev train are formulated. Finally, by deriving the equations of the force acting on the guideway considering Maglev train-bridge interaction, the complete system matrices of Maglev train-guideway structure system are composed.

The submerged flexible membrane breakwaters in oblique seas

  • S.T.Kee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2001.05b
    • /
    • pp.1133-1138
    • /
    • 2001
  • The focus of this paper is on the numerical investigation of obliquely incident wane interactions with a system composed of full submerged and floating dual buoy/vertical-flexible-membrane breakwaters placed in parallel with spacing. The fully submerged systems allow surface and bottom clearances to enable wave transmission over and under the system. The problem is formulated based on the two-dimensional multi-domain hydro-elastic linear wave-body interaction theory. The hydrodynamic interaction of oblique incident waves with the combination of the rigid and flexible bodies was solved by the distribution of the simple sources (modified Bessel function of fille second kind) tat satisfy the Helmholz governing equation. Using this computer program, the performance of various dual systems varying buoy radiuses and drafts, membrane lengths, clearances. spacing, mooring-lines stiffness, mooring types, water depth, and wave characteristics is thoroughly examined. It is found that the fully submerged and floating dual buoy/membrane breakwaters call, if it is properly tuned to the coming waves, have good performances ill reflecting the obliquely incident waves over a tilde range of wave frequency and headings.

  • PDF

A Modular Formulation for Flexible Multibody Systems Including Nonlinear Finite Elements

  • Kubler Lars;Eberhard Peter
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.spc1
    • /
    • pp.461-472
    • /
    • 2005
  • A formulation for flexible multibody systems (MBS) is investigated, where rigid MBS substructures are coupled with flexible bodies described by a nonlinear finite element (FE) approach. Several aspects that turned out to be crucial for the presented approach are discussed. The system describing equations are given in differential algebraic form (DAE), where many sophisticated solvers exist. In this paper the performance of several solvers is investigated regarding their suitability for the application to the usually highly stiff DAE. The substructures are connected with each other by nonlinear algebraic constraint equations. Further, partial derivatives of the constraints are required, which often leads to extensive algebraic trans-formations. Handcoding of analytically determined derivatives is compared to an approach utilizing algorithmic differentiation.

Optimal Design of Vehicle Suspension System (차량 현가장치의 최적설계)

  • Tak, Tae-Oh;Chung, Sung-Hoon
    • Journal of Industrial Technology
    • /
    • v.19
    • /
    • pp.43-50
    • /
    • 1999
  • Vehicle suspensions can be regarded as interconnection of rigid bodies with kinematic joints and compliance elements such as springs, bushings, and stabilizers. Design of a suspension system requires detailed specification of the interconnection point (or so called hard points) and characteristic values of compliance elements. During the design process, these design variables are determined to meet some prescribed performance targets expressed in terms of SDFs (Static Design Factors), such as toe, camber, compliance steer, etc. This paper elaborates on a systematic approach to achieve optimum design of suspension systems.

  • PDF

Self-Learning Control of Cooperative Motion for Humanoid Robots

  • Hwang, Yoon-Kwon;Choi, Kook-Jin;Hong, Dae-Sun
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.6
    • /
    • pp.725-735
    • /
    • 2006
  • This paper deals with the problem of self-learning cooperative motion control for the pushing task of a humanoid robot in the sagittal plane. A model with 27 linked rigid bodies is developed to simulate the system dynamics. A simple genetic algorithm(SGA) is used to find the cooperative motion, which is to minimize the total energy consumption for the entire humanoid robot body. And the multi-layer neural network based on backpropagation(BP) is also constructed and applied to generalize parameters, which are obtained from the optimization procedure by SGA, in order to control the system.

Suppression of Load Pendulation Using Tagline Control System for Floating Crane (해상 크레인에 의해 인양되는 중량물의 거동 감쇠를 위한 Tagline 제어 시스템)

  • Ku, Nam-Kug;Cha, Ju-Hwan;Kwon, Jung-Han;Lee, Kyu-Yuel
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.5
    • /
    • pp.527-535
    • /
    • 2009
  • This paper describes the control system to suppress the load pendulation using tagline for the floating crane. Dynamic equation of motion of the floating crane and the load is derived using Newton's 2nd law and free body model. The floating crane and the load are assumed that they move in center plane. Each rigid body has 3 DOF (surge, heave, pitch), because it moves in two directions and rotates. Then, this system, which is composed of two rigid bodies, has 6 DOF. The gravitational force, the hydrostatic force, the hydrodynamic force and the tension of the wire rope are considered as external forces, which affect to the floating crane. To suppress the pendulation of the load, the tagline, which connects between the load and the float crane, is applied to the system. The tagline is composed of the spring and the wire rope. Proportional and Derivative control is used as a linear control algorithm. The results of the numerical analysis of the 3,600 ton floating crane show that the tagline system is effective to suppress the load pendulation.