• 제목/요약/키워드: System characteristics

검색결과 35,616건 처리시간 0.071초

Inflow at Ssangyongmun Gate During the Goryeo Dynasty and Its Identity (고려시대 쌍룡문경(雙龍紋鏡) 유입(流入)과 독자성(獨自性))

  • Choi, Juyeon
    • Korean Journal of Heritage: History & Science
    • /
    • 제52권2호
    • /
    • pp.142-171
    • /
    • 2019
  • The dragon is an imaginary animal that appears in the legends and myths of the Orient and the West. While dragons have mostly been portrayed as aggressive and as bad omens in the West, in the Orient, as they symbolize the emperor or have an auspicious meaning, dragons signify a positive meaning. In addition, as the dragon symbolizes the emperor and its type has been diversified considering it as a divine object that controls water, people have tried to express it as a figure. The records related to dragons in the Goryeo dynasty appeared with diverse topics in 'History of Goryeo' and are generally contents related to founding myths, rituals for rain, and Shinii (神異), etc. The founding myth emphasizes the legality of the Goryeo dynasty through the dragon, and this influenced the formation of the dragon's descendants. In addition, the ability to control water, which is a characteristic of the dragon, was symbolized as an earth dragon related to the rainmaking ritual, i.e., wishing for rain during times of drought. Since the dragon was the symbol of the royal family, the use of the dragon by common people was strictly restricted. Furthermore, the association of a bronze dragon mirror with the royal family is hard to be excluded. The type and quantity of bronze double dragon mirrors discovered to have existed during the Goryeo dynasty is great, and the production and the distribution of bronze mirrors with double dragons seem to have been more active compared to other bronze mirrors, as bronze mirrors with double dragons produced during Goryeo and bronze mirrors originating in China were mixed. Therefore, in this article, the characteristics of diverse bronze mirrors from the 10th century to the 14th century in China were examined. It seems that the master craftsmen who produced bronze mirrors with double dragons during the Goryeo dynasty were influenced by Chinese composition patterns when making the mirrors. Because there were many cases where a bronze mirror's country of origin could not easily be determined, in order to identify the differences between bronze double dragon mirrors produced during the Goryeo dynasty and bronze mirrors produced in China, meticulous analysis was required. Thus, to ascertain that Goryeo mirrors were not imitations of bronze mirrors with double dragons originating in China but produced independently, the mirrors were examined using the bronze double dragon mirror type classification system existing in our country. Bronze mirrors with double dragons are classified into three types: Type I, which has the style of the Yao dynasty, includes the greatest proportion; however, despite there being only a small quantity for comparison, Types II and III were selected for the analysis of the bronze mirrors with double dragons made in Goryeo because they have unique composition patterns. As mentioned above, distinguishing bronze mirrors made during Goryeo from bronze mirrors made in China is challenging because Goryeo bronze mirrors were made under the influence of China. Among them, since the manufacturing place of the bronze mirrors with double dragons found at the nine-story stone pagoda in Woljeongsa Temple in Pyeongchang is questionable and the composition pattern of the bronze mirror is hard to find on bronze mirrors with double dragons made in China, the manufacturing place of those bronze mirrors were examined. These bronze mirrors with double dragons were considered as bronze mirrors with double dragons made during the Goryeo dynasty adopting the Yao dynasty style composition pattern as aspects of the composition pattern belonged to Type I, and the detailed combination of patterns is hard to find in mirrors produced in China.

A study on the prediction of korean NPL market return (한국 NPL시장 수익률 예측에 관한 연구)

  • Lee, Hyeon Su;Jeong, Seung Hwan;Oh, Kyong Joo
    • Journal of Intelligence and Information Systems
    • /
    • 제25권2호
    • /
    • pp.123-139
    • /
    • 2019
  • The Korean NPL market was formed by the government and foreign capital shortly after the 1997 IMF crisis. However, this market is short-lived, as the bad debt has started to increase after the global financial crisis in 2009 due to the real economic recession. NPL has become a major investment in the market in recent years when the domestic capital market's investment capital began to enter the NPL market in earnest. Although the domestic NPL market has received considerable attention due to the overheating of the NPL market in recent years, research on the NPL market has been abrupt since the history of capital market investment in the domestic NPL market is short. In addition, decision-making through more scientific and systematic analysis is required due to the decline in profitability and the price fluctuation due to the fluctuation of the real estate business. In this study, we propose a prediction model that can determine the achievement of the benchmark yield by using the NPL market related data in accordance with the market demand. In order to build the model, we used Korean NPL data from December 2013 to December 2017 for about 4 years. The total number of things data was 2291. As independent variables, only the variables related to the dependent variable were selected for the 11 variables that indicate the characteristics of the real estate. In order to select the variables, one to one t-test and logistic regression stepwise and decision tree were performed. Seven independent variables (purchase year, SPC (Special Purpose Company), municipality, appraisal value, purchase cost, OPB (Outstanding Principle Balance), HP (Holding Period)). The dependent variable is a bivariate variable that indicates whether the benchmark rate is reached. This is because the accuracy of the model predicting the binomial variables is higher than the model predicting the continuous variables, and the accuracy of these models is directly related to the effectiveness of the model. In addition, in the case of a special purpose company, whether or not to purchase the property is the main concern. Therefore, whether or not to achieve a certain level of return is enough to make a decision. For the dependent variable, we constructed and compared the predictive model by calculating the dependent variable by adjusting the numerical value to ascertain whether 12%, which is the standard rate of return used in the industry, is a meaningful reference value. As a result, it was found that the hit ratio average of the predictive model constructed using the dependent variable calculated by the 12% standard rate of return was the best at 64.60%. In order to propose an optimal prediction model based on the determined dependent variables and 7 independent variables, we construct a prediction model by applying the five methodologies of discriminant analysis, logistic regression analysis, decision tree, artificial neural network, and genetic algorithm linear model we tried to compare them. To do this, 10 sets of training data and testing data were extracted using 10 fold validation method. After building the model using this data, the hit ratio of each set was averaged and the performance was compared. As a result, the hit ratio average of prediction models constructed by using discriminant analysis, logistic regression model, decision tree, artificial neural network, and genetic algorithm linear model were 64.40%, 65.12%, 63.54%, 67.40%, and 60.51%, respectively. It was confirmed that the model using the artificial neural network is the best. Through this study, it is proved that it is effective to utilize 7 independent variables and artificial neural network prediction model in the future NPL market. The proposed model predicts that the 12% return of new things will be achieved beforehand, which will help the special purpose companies make investment decisions. Furthermore, we anticipate that the NPL market will be liquidated as the transaction proceeds at an appropriate price.

Improvement of Certification Criteria based on Analysis of On-site Investigation of Good Agricultural Practices(GAP) for Ginseng (인삼 GAP 인증기준의 현장실천평가결과 분석에 따른 인증기준 개선방안)

  • Yoon, Deok-Hoon;Nam, Ki-Woong;Oh, Soh-Young;Kim, Ga-Bin
    • Journal of Food Hygiene and Safety
    • /
    • 제34권1호
    • /
    • pp.40-51
    • /
    • 2019
  • Ginseng has a unique production system that is different from those used for other crops. It is subject to the Ginseng Industry Act., requires a long-term cultivation period of 4-6 years, involves complicated cultivation characteristics whereby ginseng is not produced in a single location, and many ginseng farmers engage in mixed-farming. Therefore, to bring the production of Ginseng in line with GAP standards, it is necessary to better understand the on-site practices of Ginseng farmers according to established control points, and to provide a proper action plan for improving efficiency. Among ginseng farmers in Korea who applied for GAP certification, 77.6% obtained it, which is lower than the 94.1% of farmers who obtained certification for other products. 13.7% of the applicants were judged to be unsuitable during document review due to their use of unregistered pesticides and soil heavy metals. Another 8.7% of applicants failed to obtain certification due to inadequate management results. This is a considerably higher rate of failure than the 5.3% incompatibility of document inspection and 0.6% incompatibility of on-site inspection, which suggests that it is relatively more difficult to obtain GAP certification for ginseng farming than for other crops. Ginseng farmers were given an average of 2.65 points out of 10 essential control points and a total 72 control points, which was slightly lower than the 2.81 points obtained for other crops. In particular, ginseng farmers were given an average of 1.96 points in the evaluation of compliance with the safe use standards for pesticides, which was much lower than the average of 2.95 points for other crops. Therefore, it is necessary to train ginseng farmers to comply with the safe use of pesticides. In the other essential control points, the ginseng farmers were rated at an average of 2.33 points, lower than the 2.58 points given for other crops. Several other areas of compliance in which the ginseng farmers also rated low in comparison to other crops were found. These inclued record keeping over 1 year, record of pesticide use, pesticide storages, posts harvest storage management, hand washing before and after work, hygiene related to work clothing, training of workers safety and hygiene, and written plan of hazard management. Also, among the total 72 control points, there are 12 control points (10 required, 2 recommended) that do not apply to ginseng. Therefore, it is considered inappropriate to conduct an effective evaluation of the ginseng production process based on the existing certification standards. In conclusion, differentiated certification standards are needed to expand GAP certification for ginseng farmers, and it is also necessary to develop programs that can be implemented in a more systematic and field-oriented manner to provide the farmers with proper GAP management education.

A Study on the Spatial Structure of Eupchi(邑治) and Landscape Architecture of Provincial Government Office(地方官衙) in the Late Joseon Dynasty through 'Sukchunjeahdo(宿踐諸衙圖)' - Focused on the Youngyuhyun Pyeongan Province and Sincheongun Hwanghae Province - (『숙천제아도(宿踐諸衙圖)』를 통해 본 조선시대 읍치(邑治)의 공간구조와 관아(官衙) 조경 - 평안도 영유현과 황해도 신천군을 중심으로 -)

  • Shin, Sang sup;Lee, Seung yoen
    • Korean Journal of Heritage: History & Science
    • /
    • 제49권2호
    • /
    • pp.86-103
    • /
    • 2016
  • 'Sukchunjeahdo' illustration-book, which was left by Han, Pil-gyo(韓弼敎 : 1807~1878)in the late Joseon Dynasty, includes pictorial record paintings containing government offices, Eupchi, and Feng Shui condition drawn by Gyehwa(界畵) method Sabangjeondomyobeop(四方顚倒描法) and is the rare historical material that help to understand spatial structure and landscape characteristics. Youngyuhyun(永柔縣) and Sincheongun(信川郡) town, the case sites of this study, show Feng Shui foundation structure and placement rules of government offices in the Joseon Period are applied such as 3Dan 1Myo(三壇一廟 : Sajikdan, Yeodan, Seonghwangdan, Hyanggyo), 3Mun 3Jo(三門三朝 : Oeah, Dongheon, Naeah) and Jeonjohuchim(前朝後寢) etc. by setting the upper and lower hierarchy of the north south central axis. The circulation system is the pattern that roads are segmented around the marketplace of the entrance of the town and the structure is that heading to the north along the internal way leads to the government office and going out to the main street leads to the major city. Baesanimsu(背山臨水 : Mountain in backward and water in front) foundation, back hill pine forest, intentionally created low mountains and town forest etc. showed landscape aesthetics well suited for the environmental comfort condition such as microclimate control, natural disaster prevention, psychological stability reflecting color constancy principle etc. and tower pavilions were built throughout the scenic spot, reflecting life philosophy and thoughts of contemporaries such as physical and mental discipline, satisfied at the reality of poverty, returning to nature etc. For government office landscape, shielding and buffer planting, landscape planting etc. were considered around Gaeksa(客舍), Dongheon(東軒), Naeah(內衙) backyard and deciduous tree s and flowering trees were cultivated as main species and in case of Gaeksa, tiled pavilions and pavilions topped with poke weed in tetragonal pond were introduced to Dongheon and Naeah and separate pavilions were built for the purpose of physical and mental discipline and military training such as archery. Back hill pine tree forest formed back landscape and zelkova, pear trees, willow trees, old pine trees, lotus, flowering trees etc. were cultivated as gardening trees and Feng-Shui forest with willow trees as its main species was created for landscape and practical purposes. On the other hand, various cultural landscape elements etc. were introduced such as pavilions, pond serving as fire protection water(square and circle), stone pagoda and stone Buddha, fountains and wells, monument houses, flagpoles etc. In case of Sincheongun town forest(邑藪), Manhagwan(挽河觀), Moonmujeong(文武井), Sangjangdae(上場岱) and Hajangdae(下場岱) Market place, Josanshup<(造山藪 : Dongseojanglim(東西長林)>, Namcheon(南川) etc. were combined and community cultural park with the nature of modern urban park was operated. In this context, government office landscape shows the garden management aspect where square pond and pavilions, flowering trees are harmonized around side pavilion and backyard. Also, environmental design technique not biased to aesthetics and ideological moral philosophy and comprehensively considering functionality (shielding and fire prevention, microclimate control, etc.) and environmental soundness etc. is working.

An Study on Cognition and Investigation of Silla Tumuli in the Japanese Imperialistic Rule (일제강점기의 신라고분조사연구에 대한 검토)

  • Cha, Soon Chul
    • Korean Journal of Heritage: History & Science
    • /
    • 제39권
    • /
    • pp.95-130
    • /
    • 2006
  • Japanese government college researchers, including Sekino Tadashi(關野貞), have conducted research studies and collected data, on overall Korean cultural relics as well as Silla tumuli(新羅古墳) in the early modern times under the Japanese imperialistic rule. They were supported by the Meichi government in the early stage of research, by the Chosun government-general, and by their related organizations after Korea was coIonialized to carry out investigations on Korean antiquities, fine arts, architecture, anthropology, folklore, and so on. The objective for which they prosecuted inquiries into Korean cultural relics, including Silla tumuli, may be attributed to the purport to find out such data as needed for the theoretical foundation to justify their colonialization of Korea. Such a reason often showed locally biased or distorted views. Investigations and surveys had been incessantly carried out by those Japanese scholars who took a keen interest in Korean tumuli and excavated relics since 1886. 'Korea Architecture Survey Reports' conducted in 1904 by Sekino in Korea gives a brief introduction of the contents of Korean tumuli, including the Five Royal Mausoleums(五陵). And in 1906 Imanishi Ryu(今西龍) launched for the first time an excavation survey on Buksan Tumulus(北山古墳) in Sogeumgangsan(小金剛山) and on 'Namchong(南塚)' in Hwangnam-dong, which greatly contributed to the foundation of a basic understanding of Wooden chamber tombs with stone mound(積石木槨墳) and stone chambers with tunnel entrance(橫穴式石室墳). The ground plan and cross section of stone chambers made in 1909 at his excavation survey of seokchimchong(石枕塚) by Yazui Seiyichi(谷井第一) who majored in architecture made a drawing in excavation surveys for the first time in Korea, in which numerical expressions are sharply distinguished from the previous sketched ones. And even in the following excavation surveys this kind of drawing continued. Imanishi and Yazui elucidated that wooden chambers with stone mound chronologically differs from the stone chambers with tunnel entrance on the basis of the results of surveys of the locational characteristics of Silla tumuli, the forms and size of tomb entrance, excavated relics, and so forth. The government-general put in force 'the Historic Spots and Relics Preservation Rules' and 'the Historic Spots Survey Council Regulations' in 1916, establishing 'Historic Spots Survey Council and Museum Conference. When museums initiated their activities, they exhibited those relics excavated from tumuli and conducted surveys of relics with the permission of the Chosun government-general. A gold crown tomb(金冠塚) was excavated and surveyed in 1921 and a seobong tomb(瑞鳳塚) in 1927. Concomitantly with this large size wooden chamber tombs with stone mound attracted strong public attention. Furthermore, a variety of surveys of spots throughout the country were carried out but publication of tumuli had not yet been realized. Recently some researchers's endeavors led to publish unpublished reports. However, the reason why reports of such significant tumuli as seobong tomb had not yet been published may be ascribed to the critical point in those days. The Gyeongju Tumuli Distribution Chart made by Nomori Ken(野守健) on the basis of the land register in the late 1920s seems of much significance in that it specifies the size and locations of 155 tumuli and shows the overall shape of tumuli groups within the city, as used in today's distribution chart. In the 1930s Arimitsu Kyoichi(有光敎一) and Saito Tadashi(齋藤忠) identified through excavation surveys of many wooden chamber tombs with stone mound and stone chambers with tunnel entrance, that there were several forms of tombs in a tomb system. In particular, his excavation survey experience of those wooden chamber tombs with stone mound which were exposed in complicated and overlapped forms show features more developed than that of preceding excavation surveys and reports publication, and so on. The result of having reviewed the contents of many historic spots surveyed at that time. Therefore this reexamination is considered to be a significant project in arranging the history of archaeology in Korea.

A Study on the Development Trend of Artificial Intelligence Using Text Mining Technique: Focused on Open Source Software Projects on Github (텍스트 마이닝 기법을 활용한 인공지능 기술개발 동향 분석 연구: 깃허브 상의 오픈 소스 소프트웨어 프로젝트를 대상으로)

  • Chong, JiSeon;Kim, Dongsung;Lee, Hong Joo;Kim, Jong Woo
    • Journal of Intelligence and Information Systems
    • /
    • 제25권1호
    • /
    • pp.1-19
    • /
    • 2019
  • Artificial intelligence (AI) is one of the main driving forces leading the Fourth Industrial Revolution. The technologies associated with AI have already shown superior abilities that are equal to or better than people in many fields including image and speech recognition. Particularly, many efforts have been actively given to identify the current technology trends and analyze development directions of it, because AI technologies can be utilized in a wide range of fields including medical, financial, manufacturing, service, and education fields. Major platforms that can develop complex AI algorithms for learning, reasoning, and recognition have been open to the public as open source projects. As a result, technologies and services that utilize them have increased rapidly. It has been confirmed as one of the major reasons for the fast development of AI technologies. Additionally, the spread of the technology is greatly in debt to open source software, developed by major global companies, supporting natural language recognition, speech recognition, and image recognition. Therefore, this study aimed to identify the practical trend of AI technology development by analyzing OSS projects associated with AI, which have been developed by the online collaboration of many parties. This study searched and collected a list of major projects related to AI, which were generated from 2000 to July 2018 on Github. This study confirmed the development trends of major technologies in detail by applying text mining technique targeting topic information, which indicates the characteristics of the collected projects and technical fields. The results of the analysis showed that the number of software development projects by year was less than 100 projects per year until 2013. However, it increased to 229 projects in 2014 and 597 projects in 2015. Particularly, the number of open source projects related to AI increased rapidly in 2016 (2,559 OSS projects). It was confirmed that the number of projects initiated in 2017 was 14,213, which is almost four-folds of the number of total projects generated from 2009 to 2016 (3,555 projects). The number of projects initiated from Jan to Jul 2018 was 8,737. The development trend of AI-related technologies was evaluated by dividing the study period into three phases. The appearance frequency of topics indicate the technology trends of AI-related OSS projects. The results showed that the natural language processing technology has continued to be at the top in all years. It implied that OSS had been developed continuously. Until 2015, Python, C ++, and Java, programming languages, were listed as the top ten frequently appeared topics. However, after 2016, programming languages other than Python disappeared from the top ten topics. Instead of them, platforms supporting the development of AI algorithms, such as TensorFlow and Keras, are showing high appearance frequency. Additionally, reinforcement learning algorithms and convolutional neural networks, which have been used in various fields, were frequently appeared topics. The results of topic network analysis showed that the most important topics of degree centrality were similar to those of appearance frequency. The main difference was that visualization and medical imaging topics were found at the top of the list, although they were not in the top of the list from 2009 to 2012. The results indicated that OSS was developed in the medical field in order to utilize the AI technology. Moreover, although the computer vision was in the top 10 of the appearance frequency list from 2013 to 2015, they were not in the top 10 of the degree centrality. The topics at the top of the degree centrality list were similar to those at the top of the appearance frequency list. It was found that the ranks of the composite neural network and reinforcement learning were changed slightly. The trend of technology development was examined using the appearance frequency of topics and degree centrality. The results showed that machine learning revealed the highest frequency and the highest degree centrality in all years. Moreover, it is noteworthy that, although the deep learning topic showed a low frequency and a low degree centrality between 2009 and 2012, their ranks abruptly increased between 2013 and 2015. It was confirmed that in recent years both technologies had high appearance frequency and degree centrality. TensorFlow first appeared during the phase of 2013-2015, and the appearance frequency and degree centrality of it soared between 2016 and 2018 to be at the top of the lists after deep learning, python. Computer vision and reinforcement learning did not show an abrupt increase or decrease, and they had relatively low appearance frequency and degree centrality compared with the above-mentioned topics. Based on these analysis results, it is possible to identify the fields in which AI technologies are actively developed. The results of this study can be used as a baseline dataset for more empirical analysis on future technology trends that can be converged.

A Methodology of Customer Churn Prediction based on Two-Dimensional Loyalty Segmentation (이차원 고객충성도 세그먼트 기반의 고객이탈예측 방법론)

  • Kim, Hyung Su;Hong, Seung Woo
    • Journal of Intelligence and Information Systems
    • /
    • 제26권4호
    • /
    • pp.111-126
    • /
    • 2020
  • Most industries have recently become aware of the importance of customer lifetime value as they are exposed to a competitive environment. As a result, preventing customers from churn is becoming a more important business issue than securing new customers. This is because maintaining churn customers is far more economical than securing new customers, and in fact, the acquisition cost of new customers is known to be five to six times higher than the maintenance cost of churn customers. Also, Companies that effectively prevent customer churn and improve customer retention rates are known to have a positive effect on not only increasing the company's profitability but also improving its brand image by improving customer satisfaction. Predicting customer churn, which had been conducted as a sub-research area for CRM, has recently become more important as a big data-based performance marketing theme due to the development of business machine learning technology. Until now, research on customer churn prediction has been carried out actively in such sectors as the mobile telecommunication industry, the financial industry, the distribution industry, and the game industry, which are highly competitive and urgent to manage churn. In addition, These churn prediction studies were focused on improving the performance of the churn prediction model itself, such as simply comparing the performance of various models, exploring features that are effective in forecasting departures, or developing new ensemble techniques, and were limited in terms of practical utilization because most studies considered the entire customer group as a group and developed a predictive model. As such, the main purpose of the existing related research was to improve the performance of the predictive model itself, and there was a relatively lack of research to improve the overall customer churn prediction process. In fact, customers in the business have different behavior characteristics due to heterogeneous transaction patterns, and the resulting churn rate is different, so it is unreasonable to assume the entire customer as a single customer group. Therefore, it is desirable to segment customers according to customer classification criteria, such as loyalty, and to operate an appropriate churn prediction model individually, in order to carry out effective customer churn predictions in heterogeneous industries. Of course, in some studies, there are studies in which customers are subdivided using clustering techniques and applied a churn prediction model for individual customer groups. Although this process of predicting churn can produce better predictions than a single predict model for the entire customer population, there is still room for improvement in that clustering is a mechanical, exploratory grouping technique that calculates distances based on inputs and does not reflect the strategic intent of an entity such as loyalties. This study proposes a segment-based customer departure prediction process (CCP/2DL: Customer Churn Prediction based on Two-Dimensional Loyalty segmentation) based on two-dimensional customer loyalty, assuming that successful customer churn management can be better done through improvements in the overall process than through the performance of the model itself. CCP/2DL is a series of churn prediction processes that segment two-way, quantitative and qualitative loyalty-based customer, conduct secondary grouping of customer segments according to churn patterns, and then independently apply heterogeneous churn prediction models for each churn pattern group. Performance comparisons were performed with the most commonly applied the General churn prediction process and the Clustering-based churn prediction process to assess the relative excellence of the proposed churn prediction process. The General churn prediction process used in this study refers to the process of predicting a single group of customers simply intended to be predicted as a machine learning model, using the most commonly used churn predicting method. And the Clustering-based churn prediction process is a method of first using clustering techniques to segment customers and implement a churn prediction model for each individual group. In cooperation with a global NGO, the proposed CCP/2DL performance showed better performance than other methodologies for predicting churn. This churn prediction process is not only effective in predicting churn, but can also be a strategic basis for obtaining a variety of customer observations and carrying out other related performance marketing activities.

Aspect-Based Sentiment Analysis Using BERT: Developing Aspect Category Sentiment Classification Models (BERT를 활용한 속성기반 감성분석: 속성카테고리 감성분류 모델 개발)

  • Park, Hyun-jung;Shin, Kyung-shik
    • Journal of Intelligence and Information Systems
    • /
    • 제26권4호
    • /
    • pp.1-25
    • /
    • 2020
  • Sentiment Analysis (SA) is a Natural Language Processing (NLP) task that analyzes the sentiments consumers or the public feel about an arbitrary object from written texts. Furthermore, Aspect-Based Sentiment Analysis (ABSA) is a fine-grained analysis of the sentiments towards each aspect of an object. Since having a more practical value in terms of business, ABSA is drawing attention from both academic and industrial organizations. When there is a review that says "The restaurant is expensive but the food is really fantastic", for example, the general SA evaluates the overall sentiment towards the 'restaurant' as 'positive', while ABSA identifies the restaurant's aspect 'price' as 'negative' and 'food' aspect as 'positive'. Thus, ABSA enables a more specific and effective marketing strategy. In order to perform ABSA, it is necessary to identify what are the aspect terms or aspect categories included in the text, and judge the sentiments towards them. Accordingly, there exist four main areas in ABSA; aspect term extraction, aspect category detection, Aspect Term Sentiment Classification (ATSC), and Aspect Category Sentiment Classification (ACSC). It is usually conducted by extracting aspect terms and then performing ATSC to analyze sentiments for the given aspect terms, or by extracting aspect categories and then performing ACSC to analyze sentiments for the given aspect category. Here, an aspect category is expressed in one or more aspect terms, or indirectly inferred by other words. In the preceding example sentence, 'price' and 'food' are both aspect categories, and the aspect category 'food' is expressed by the aspect term 'food' included in the review. If the review sentence includes 'pasta', 'steak', or 'grilled chicken special', these can all be aspect terms for the aspect category 'food'. As such, an aspect category referred to by one or more specific aspect terms is called an explicit aspect. On the other hand, the aspect category like 'price', which does not have any specific aspect terms but can be indirectly guessed with an emotional word 'expensive,' is called an implicit aspect. So far, the 'aspect category' has been used to avoid confusion about 'aspect term'. From now on, we will consider 'aspect category' and 'aspect' as the same concept and use the word 'aspect' more for convenience. And one thing to note is that ATSC analyzes the sentiment towards given aspect terms, so it deals only with explicit aspects, and ACSC treats not only explicit aspects but also implicit aspects. This study seeks to find answers to the following issues ignored in the previous studies when applying the BERT pre-trained language model to ACSC and derives superior ACSC models. First, is it more effective to reflect the output vector of tokens for aspect categories than to use only the final output vector of [CLS] token as a classification vector? Second, is there any performance difference between QA (Question Answering) and NLI (Natural Language Inference) types in the sentence-pair configuration of input data? Third, is there any performance difference according to the order of sentence including aspect category in the QA or NLI type sentence-pair configuration of input data? To achieve these research objectives, we implemented 12 ACSC models and conducted experiments on 4 English benchmark datasets. As a result, ACSC models that provide performance beyond the existing studies without expanding the training dataset were derived. In addition, it was found that it is more effective to reflect the output vector of the aspect category token than to use only the output vector for the [CLS] token as a classification vector. It was also found that QA type input generally provides better performance than NLI, and the order of the sentence with the aspect category in QA type is irrelevant with performance. There may be some differences depending on the characteristics of the dataset, but when using NLI type sentence-pair input, placing the sentence containing the aspect category second seems to provide better performance. The new methodology for designing the ACSC model used in this study could be similarly applied to other studies such as ATSC.

A Study on the Effect of Network Centralities on Recommendation Performance (네트워크 중심성 척도가 추천 성능에 미치는 영향에 대한 연구)

  • Lee, Dongwon
    • Journal of Intelligence and Information Systems
    • /
    • 제27권1호
    • /
    • pp.23-46
    • /
    • 2021
  • Collaborative filtering, which is often used in personalization recommendations, is recognized as a very useful technique to find similar customers and recommend products to them based on their purchase history. However, the traditional collaborative filtering technique has raised the question of having difficulty calculating the similarity for new customers or products due to the method of calculating similaritiesbased on direct connections and common features among customers. For this reason, a hybrid technique was designed to use content-based filtering techniques together. On the one hand, efforts have been made to solve these problems by applying the structural characteristics of social networks. This applies a method of indirectly calculating similarities through their similar customers placed between them. This means creating a customer's network based on purchasing data and calculating the similarity between the two based on the features of the network that indirectly connects the two customers within this network. Such similarity can be used as a measure to predict whether the target customer accepts recommendations. The centrality metrics of networks can be utilized for the calculation of these similarities. Different centrality metrics have important implications in that they may have different effects on recommended performance. In this study, furthermore, the effect of these centrality metrics on the performance of recommendation may vary depending on recommender algorithms. In addition, recommendation techniques using network analysis can be expected to contribute to increasing recommendation performance even if they apply not only to new customers or products but also to entire customers or products. By considering a customer's purchase of an item as a link generated between the customer and the item on the network, the prediction of user acceptance of recommendation is solved as a prediction of whether a new link will be created between them. As the classification models fit the purpose of solving the binary problem of whether the link is engaged or not, decision tree, k-nearest neighbors (KNN), logistic regression, artificial neural network, and support vector machine (SVM) are selected in the research. The data for performance evaluation used order data collected from an online shopping mall over four years and two months. Among them, the previous three years and eight months constitute social networks composed of and the experiment was conducted by organizing the data collected into the social network. The next four months' records were used to train and evaluate recommender models. Experiments with the centrality metrics applied to each model show that the recommendation acceptance rates of the centrality metrics are different for each algorithm at a meaningful level. In this work, we analyzed only four commonly used centrality metrics: degree centrality, betweenness centrality, closeness centrality, and eigenvector centrality. Eigenvector centrality records the lowest performance in all models except support vector machines. Closeness centrality and betweenness centrality show similar performance across all models. Degree centrality ranking moderate across overall models while betweenness centrality always ranking higher than degree centrality. Finally, closeness centrality is characterized by distinct differences in performance according to the model. It ranks first in logistic regression, artificial neural network, and decision tree withnumerically high performance. However, it only records very low rankings in support vector machine and K-neighborhood with low-performance levels. As the experiment results reveal, in a classification model, network centrality metrics over a subnetwork that connects the two nodes can effectively predict the connectivity between two nodes in a social network. Furthermore, each metric has a different performance depending on the classification model type. This result implies that choosing appropriate metrics for each algorithm can lead to achieving higher recommendation performance. In general, betweenness centrality can guarantee a high level of performance in any model. It would be possible to consider the introduction of proximity centrality to obtain higher performance for certain models.

A Study on the Identifying OECMs in Korea for Achieving the Kunming-Montreal Global Biodiversity Framework - Focusing on the Concept and Experts' Perception - (쿤밍-몬트리올 글로벌 생물다양성 보전목표 성취를 위한 우리나라 OECM 발굴방향 연구 - 개념 고찰 및 전문가 인식을 중심으로 -)

  • Hag-Young Heo;Sun-Joo Park
    • Korean Journal of Environment and Ecology
    • /
    • 제37권4호
    • /
    • pp.302-314
    • /
    • 2023
  • This study aims to explore the direction for Korea's effective response to Target 3 (30by30), which can be said to be the core of the Kunming-Montreal Global Biodiversity Framework (K-M GBF) of the Convention on Biological Diversity (CBD), to find the direction of systematic OECM (Other Effective area-based Conservation Measures) discovery at the national level through a survey of global conceptual review and expert perception of OECM. This study examined ① the use of Korean terms related to OECM, ② derivation of determining criteria reflecting global standards, ③ deriving types of potential OECM candidates in Korea, and ④ considerations for OECM identification and reporting to explore the direction for identifying systematic, national-level OECM that complies with global standards and reflects the Korean context. First, there was consensus for using Korean terminology that reflects the concept of OECM rather than simple translations, and it was determined that "nature coexistence area" was the most preferred term (12 people) and had the same context as CBD 2050 Vision of "a world of living in harmony with nature." This study suggests utilizing four criteria (1. No protected areas, 2. Geographic boundaries, 3. Governance/management, and 4. Biodiversity value) that reflect OECM's core characteristics in the first-stage selection process, carrying out the consensus-building process (stage 2) with the relevant agencies, and adding two criteria (3-1 Effectiveness and sustainability of governance and management and 4-1 Long-term conservation) and performing the in-depth diagnosis in stage 3 (full assessment for reporting). The 28 types examined in this study were generally compatible with OECMs (4.45-6.21/7 points, mean 5.24). In particular, the "Conservation Properties (6.21 points)" and "Conservation Agreements (6.07 points)", which are controlled by National Nature Trust, are shown to be the most in line with the OECM concept. They were followed by "Buffer zone of World Natural Heritage (5.77 points)", "Temple Forest (5.73 points)", "Green-belt (Restricted development zones, 5.63 points)", "DMZ (5.60 points)", and "Buffer zone of biosphere reserve (5.50 point)" to have high potential. In the case of "Uninhabited Islands under Absolute Conservation", the response that they conformed to the protected areas (5.83/7 points) was higher than the OECM compatibility (5.52/7 points), it is determined that in the future, it would be preferable to promote the listing of absolute unprotected islands in the Korea Database on Protected Areas (KDPA) along with their surrounding waters (1 km). Based on the results of a global OECM standard review and expert perception survey, 10 items were suggested as considerations when identifying OECM in the Korean context. In the future, continuous research is needed to identify the potential OECMs through site-level assessment regarding these considerations and establish an effective in-situ conservation system at the national level by linking existing protected area systems and identified OECMs.