• Title/Summary/Keyword: System Throughput.

Search Result 1,746, Processing Time 0.025 seconds

Space-Polarization Division Multiple Access System with Limited Feedback

  • Joung, Heejin;Jo, Han-Shin;Mun, Cheol;Yook, Jong-Gwan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.4
    • /
    • pp.1292-1306
    • /
    • 2014
  • This paper proposes a space-polarization division multiple access (SPDMA) system that has limited feedback channels. The system simultaneously serves data streams to multiple mobile users through dual-polarized antenna arrays, by using pre-determined sets of precoding vectors that are orthogonal in both space and polarization domains. To this end, a codebook whose elements are sets of the precoding vectors is systematically designed based on the discrete Fourier transform (DFT) matrix and considering the power imbalance of polarized channels. Throughput of the SPDMA system is evaluated and compared to that of space division multiple access (SDMA) system, according to the various parameters including cross polarization discrimination (XPD). The results show that the throughput of SPDMA system outperforms that of SDMA in the environments of high XPD with many mobile users.

Improved Binary CDMA Modem Design for High-Speed Wireless Communications (고속데이터 전송을 위한 개선된 Binary CDMA 모뎀 구현)

  • Lee, Jang-Youn;Cho, Jin-Woong;Hong, Dae-Ki
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.2
    • /
    • pp.11-14
    • /
    • 2010
  • In this paper, an improved binary-CDMA (Code Division Multiple Access) system for high speed multimedia data transmission will be presented. The improved binary CDMA technology will be used in municipal wireless network. The new name of the system is the Guardian system using a binary CDMA technology. The Guardian system can provide high data rate, and improve its throughput by minimizing latency from the limitation of resources of system bus during multimedia data transmission. Finally, we analyze the performance of Guardian modem according to the report of wireless data transmission test.

Performance Evaluation of Interference Alignment Technique in Wireless LAN Environment (무선랜 환경에서 간섭정렬 기술의 성능 평가)

  • Yoon, Seokhyun;Shin, Won-Yong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.11
    • /
    • pp.1639-1644
    • /
    • 2016
  • In this paper, we consider the performance improvement that can be obtained with interference alignment (IA) technique applied to 802.11ac based multi-BSS WiFi service. To this end, we developed a system simulator consisting of a link-level PHY simulator, based on 802.11ac specification, and multi-BSS proportional-fair scheduler. Specifically, assuming perfect channel side information and synchronization of signals from multiple APs, we used a SLNR based interference alignment algorithm proposed in [13] and compared its performance with that of multiuser beamforming based time-sharing system. The performance was evaluated in terms of average throughput per BSS and 5% worst user throughput. The results show that 70 to 100% throughput gain can be obtained in this ideal scenario.

A Comparison of Opportunnistic Transmission Schemes with Reduced Channel Information Feedback in OFDMA Downlink (순방향 직교 주파수분할 다중접속 시스템에서 부분적 채널정보 궤환을 이용한 전송방식의 비교분석)

  • Yoon, Seok-Hyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.7A
    • /
    • pp.768-775
    • /
    • 2008
  • In this paper, we consider downlink throughput performances of multiuser orthogonal frequency division multiplexing with reduced channel information feedback schemes. Specifically, two types of reduced feedback schemes, namely, 1-bit per sub-carrier and selective feedback scheme are considered and compared with each other in terms of average network throughput. Since the strict throughput comparison for given number of feedback bits per user is quite difficult, rather we compare their general behaviors in various system configurations with different system parameters, which can give us an insight into practical system design with those reduced feedback schemes.

A Novel Power-Efficient BS Operation Scheme for Green Heterogeneous Cellular Networks

  • Kim, Jun Yeop;Kim, Junsu;Kang, Chang Soon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.12
    • /
    • pp.1721-1735
    • /
    • 2016
  • Power-efficient base station (BS) operation is one of the important issues in future green cellular networks. Previously well-known BS operation schemes, the cell zooming scheme and the cell wilting and blossoming scheme, require tight cooperation between cells in cellular networks. With the previous schemes, the non-cooperative BSs of a serving cell and neighboring cells could cause coverage holes between the cells, thereby seriously degrading the quality of service as well as the power saving efficiency of the cellular networks. In this paper, we propose a novel power-efficient BS operation scheme for green downlink heterogeneous cellular networks, in which the networks virtually adjust the coverage of a serving macrocell (SM) and neighboring macrocells (NMs) without adjusting the transmission power of the BSs when the SM is lightly loaded, and the networks turn off the BS of the SM when none of active users are associated with the SM. Simulation results show that our proposed scheme significantly improves the power saving efficiency without degrading the quality of service (e.g., system throughput) of a downlink heterogeneous LTE network and outperforms the previous schemes in terms of system throughput and power saving efficiency. In particular, with the proposed scheme, macrocells are able to operate independently without the cooperation of a SM and NMs for green heterogeneous cellular networks.

Adaptive Resource Allocation Algorithm with GTD in Downlink MU-MIMO Channel (다중 사용자 다중 안테나 하향링크 채널에서 GTD 기반의 적응적인 자원 할당 기법)

  • Choi, Seung-Kyu;Lee, Chung-Yong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.11
    • /
    • pp.53-59
    • /
    • 2011
  • We propose an adaptive resource allocation algorithm with generalized triangular decomposition scheme in downlink multi-user multiple-input-multiple-output channel to maximize the system throughput when we adopt the modulation scheme such as BPSK, QPSK, 16QAM, and 64QAM. The proposed scheme also considers an bit-error-rate performance as well as system throughput while performing resource allocation. We present simulation results to show that the proposed scheme achieves the system throughput up to 2bit difference by capacity and has better BER performance than SVD based resource allocation scheme in all SNR regions.

Performance Evaluation of Energy Efficient Packet Transmissions Considering Fairness for Wi-Fi System (Wi-Fi 시스템을 위한 공정성 고려한 에너지 효율적 패킷 전송 방법의 성능 평가)

  • Shin, Taehyu;Park, Suwon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.14 no.3
    • /
    • pp.24-30
    • /
    • 2015
  • Wi-Fi STAs in power saving mode described in the Wi-Fi specification can deteriorate the system performance such as throughput, time delay when they receive data frames from a Wi-Fi AP. This problem is caused by data frame reception failure due to the channel state, and it increases re-transmissions. In this paper, we propose a modified power saving mode considering fairness of Wi-Fi system in order to solve the problem. By simulation, we showed that data throughput can be increased without time delay degradation if the proposed method restricting the number of packet transmission attempts and HARQ are used.

Performance Evaluation of Energy Efficient Packet Transmissions for Wi-Fi System (Wi-Fi 시스템을 위한 에너지 효율적 패킷 전송 방법의 성능 평가)

  • Shin, Taehyu;Kim, Jongwoo;Park, Suwon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.13 no.3
    • /
    • pp.38-46
    • /
    • 2014
  • Wi-Fi STAs in power saving mode described in the Wi-Fi specification can deteriorate the system performance such as throughput, time delay when they receive data frames from a Wi-Fi AP. This problem is caused by data frame reception failure due to the channel state, and it increases re-transmissions. In this paper, we propose a modified power saving mode of Wi-Fi system in order to solve the problem. Also, we evaluate its performance in terms of throughput and time delay by simulation.

A QoS-aware Scheduling Algorithm for Multiuser Diversity MIMO-OFDM System (다중 사용자 MIMO-OFDM 시스템에서의 QoS 제공을 위한 스케줄링 기법)

  • An Se-Hyun;Yoo Myung-Sik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.7A
    • /
    • pp.717-724
    • /
    • 2006
  • In order to maximize the throughput and provide the fairness between users in MIMO-OFDM system, FATM(fairness-aware throughput maximization) scheduling algorithm was proposed. In this paper, a QoS-aware scheduling algorithms for MINO-OFDM system are proposed, each of which is based on FATM. These scheduling algorithms aim to satisfy the different service requirements of various service classes. Three proposed QoS scheduling algorithms called SPQ (Strict Priority Queueing), DCBQ (Delay Constraint Based Queuing), HDCBQ (Hybrid Delay Constraint Based Queuing) are compared through computer simulations. It is shown that HDCBQ algorithm outperforms other algorithms in satisfying different requirements of various service classes.

Block-Level Resource Allocation with Limited Feedback in Multicell Cellular Networks

  • Yu, Jian;Yin, Changchuan
    • Journal of Communications and Networks
    • /
    • v.18 no.3
    • /
    • pp.420-428
    • /
    • 2016
  • In this paper, we investigate the scheduling and power allocation for coordinated multi-point transmission in downlink long term evolution advanced (LTE-A) systems, where orthogonal frequency division multiple-access is used. The proposed scheme jointly optimizes user selection, power allocation, and modulation and coding scheme (MCS) selection to maximize the weighted sum throughput with fairness consideration. Considering practical constraints in LTE-A systems, the MCSs for the resource blocks assigned to the same user need to be the same. Since the optimization problem is a combinatorial and non-convex one with high complexity, a low-complexity algorithm is proposed by separating the user selection and power allocation into two subproblems. To further simplify the optimization problem for power allocation, the instantaneous signal-to-interference-plus-noise ratio (SINR) and the average SINR are adopted to allocate power in a single cell and multiple coordinated cells, respectively. Simulation results show that the proposed scheme can improve the average system throughput and the cell-edge user throughput significantly compared with the existing schemes with limited feedback.