• Title/Summary/Keyword: System Production Process

Search Result 3,103, Processing Time 0.03 seconds

Systems Engineering Approach to Develop Intelligent Production Planning Scheduling Model linked to Machine and Quality Data (설비 및 품질 데이터 연계 지능형 생산계획 스케줄링 모델 개발을 위한 시스템엔지니어링 접근 방법)

  • Park, Jong Hee;Kim, Jin Young;Hong, Dae Geun
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.17 no.2
    • /
    • pp.1-8
    • /
    • 2021
  • This study proposes a systems engineering approach for the development of an advanced planning & scheduling (APS) system for a cosmetic case manufacturing factory. The APS system makes production plans and schedules based on the injection process, which consists of 27 plastic injection machines in parallel to control recommended inventory of products. The system uses machine operation/failure information and defective product/work-in-process tracking information to support intelligent scheduling. Furthermore, a genetic algorithm model is applied to handle the complexity of heuristic rules and machine/quality constraints in this process. As a result of the development, the recommended inventory compliance rate is improved by scheduling the 30-day production plan for 15 main products.

Evaluation of the performance and the removal characteristics of natural organic matter in a modular mobile water production system (모듈형 이동식 물생산 시스템 운전 성능 및 자연 유기물 제거 거동 평가)

  • Hwang, Yuhoon;Yang, Philje;Song, Jimin;Hong, Minji;Choi, Changhyung;Ko, Seokoh;Kim, Dogun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.1
    • /
    • pp.55-65
    • /
    • 2018
  • It is necessary to develop a mobile water production system in order to provide stable water supply in case of disasters such as floods or earthquakes. In this study, we developed a modular mobile water production system capable of producing water for various uses such as domestic water and drinking water while improving applicability in various raw water sources. The water production system consists of three stages of filtration (sand filtration - activated carbon filtration - pressure filtration) to produce domestic water and an additional reverse osmosis process to produce drinking water. In laboratory and field experiments, the domestic water production system showed excellent treatment efficiency for particulate matter, but showed limitations in the treatment of dissolved substances such as dissolved organic matter. In addition, ultraviolet irradiation was considered as additional disinfection step, because it does not form precipitates of manganese oxides after disinfection. Reverse osmosis process was added to increase the removal efficiency of dissolved substances and the treated water satisfied drinking water quality standards. Fluorescence analysis of dissolved organic matter showed that the fulvic acid-like substances in raw water was successfully removed in the reverse osmosis process. The mobile water production system developed in this study is expected to be used not only in water supply in case of disaster, but also widely used in islands and rural area.

Integrated Simulation Modeling of Business, Maintenance and Production Systems for Concurrent Improvement of Lead Time, Cost and Production Rate

  • Paknafs, Bahman;Azadeh, Ali
    • Industrial Engineering and Management Systems
    • /
    • v.15 no.4
    • /
    • pp.403-431
    • /
    • 2016
  • The objective of this study is to integrate the business, maintenance and production processes of a manufacturing system by incorporating errors. First, the required functions are estimated according to the historical data. The system activities are simulated by Visual SLAM software and the required outputs are obtained. Several outputs including lead times in different dimensions, total cost and production rates are computed through simulation. Finally, data envelopment analysis (DEA) is utilized in order to select the best option between the defined scenarios due to the multi-criteria feature of the problem. This is the first study in which the lead times, cost and production rates are simultaneously considered in the integrated system imposed of business, maintenance and production processes by incorporating errors. In the current study, the major bottlenecks of the system being studied are identified and suggested different strategies to improve the system and make the best decision.

Production Information Monitoring System for CIM in Footwear Industry

  • Kim, In-Ho
    • Journal of information and communication convergence engineering
    • /
    • v.7 no.4
    • /
    • pp.459-464
    • /
    • 2009
  • This paper presents a production information monitoring system as an infrastructure of CIM system in footwear industry. The system is composed of hardware devices of terminal, communication converter, line controller and software for manufacturing processes. A terminal like a scanner is used for shop floor data input and a line controller is used to link between terminal and server. LAN and RS485 are used for connecting hardware components and deliver their information mutually. In the system, real time production information is acquired from information resources such as group of uppers and soles. The collected production information is delivered to a line controller and analyzed. Server receives information from line controller and machines for production management. Production planning information that is machined in the server is delivered to the shop floor and used for the production management of work in process, and used for improvement of productivity in a footwear production company. The implementation of the developed system shows the effectiveness of the system.

Application of a Bioprocess Flowsheeting Software to a Process Design for the Mass Production of Foreign Protein by Using Microorganism (미생물을 이용한 외부단백질 대량생산공정의 설계를 위한 Bioprocess Flowsheeting Software의 응용)

  • 이종대
    • KSBB Journal
    • /
    • v.11 no.6
    • /
    • pp.704-711
    • /
    • 1996
  • An optimal process design of a foreign protein production system was carried out using a bioprocess flowsheeting software, BioPro Designer, with a capability of economic analysis. The flowsheeting program was applied to a production system of the tailspike protein of Salmonella phage P22, and helped save time and efforts in selecting an optimal process. A wild type tailspike and two types of mutant tailspikes, tsf G244\longrightarrow,R and Su A334\longrightarrowV, were considered in this study to show that the folding characteristics of foreign protein produced inside host influenced the selection of the best production system. An optimal production system for mature tailspike was chosen under the criterion of capital investment per unit mass of mature protein recovered.

  • PDF

Optimal Switching Frequency in Limited-Cycle with Multiple Periods

  • Sun, Jing;Yamamoto, Hisashi;Matsui, Masayuki;Kong, Xianda
    • Industrial Engineering and Management Systems
    • /
    • v.11 no.1
    • /
    • pp.48-53
    • /
    • 2012
  • Due to the customer needs of reducing cost and delivery date shorting, prompt change in the production plan became more important. In the multi period system (For instance, production line.) where target processing time exists, production, idle and delay risks occur repeatedly for multiple periods. In such situations, delay of one process may influence the delivery date of an entire process. In this paper, we discuss the minimum expected cost of the case mentioned above, where the risk depends on the previous situation and occurs repeatedly for multiple periods. This paper considers the optimal switching frequency to minimize the total expected cost of the production process. In this paper, first, the optimal switching frequency model is proposed. Next, the mathematic formulation of the total expectation is presented. Finally, the policy of optimal switching frequency is investigated by numerical experiments.

Development of Real-time Process Management System for improving safety of Shop Floor (생산현장의 안전성 향상을 위한 실시간 공정관리 시스템 개발)

  • Lee, Seung Woo;Nam, So Jeong;Lee, Jai Kyung;Lee, Hwa Ki
    • Journal of the Korea Safety Management & Science
    • /
    • v.15 no.4
    • /
    • pp.171-178
    • /
    • 2013
  • Workers are avoiding production/manufacturing sites due to the poor working environment and concern over safety. Small and medium-sized businesses introduce new equipment to secure safety in the production site or ensure effective process management by introducing the real-time monitoring technique for existing equipment. The importance of real-time monitoring of equipment and process in the production site can also be found in the ANSI/ISA-195 model. Note, however, that most production sites still use paper-based work slip as a process management technique. Data reliability may deteriorate because information on the present condition of the production site cannot be collected/analyzed properly due to manual data writing by the worker. This paper introduces the monitoring and process management technique based on a direct facility interface to secure safety in the field by improving the poor working environment and enhance there liability and real-time characteristics of the production data. Since the data is collected from equipment in real-time directly through the SIB-based interface and PLC-based interface, problems associated with workers' manual data input are expected to be solved; safety can also be improved by enhancing workers' attention to work by minimizing workers' injuries and disruption.

Efficiency Estimation of Process Plan Using Tolerance Chart

  • Kim I.H.;Dong Zuomin
    • Korean Journal of Computational Design and Engineering
    • /
    • v.11 no.2
    • /
    • pp.148-155
    • /
    • 2006
  • This paper presents a new method for assessing the efficiency of production process plans using tolerance chart to lower production cost. The tolerance chart is used to predict the accuracy of a part that is to be produced following the process plan, and to carry out the quantitative measurement on the efficiency of the process plan. By comparing the values of design tolerances and their corresponding resultant tolerances calculated using the tolerance chart, the process plan that is incapable of satisfying the design requirements and the faulty production operations can be identified. Similarly, the process plan that imposes unnecessarily high accuracy and wasteful production operations can also be identified. For the latter, a quantitative measure on the efficiency of the process plan is introduced. The higher the unnecessary cost of the production, the poor is the efficiency of the process plan. A coefficient is introduced for measuring the process plan efficiency. The coefficient also incorporates two weighting factors to reflect the difficulty of manufacturing operations and number of dimensional tolerances involved. To facilitate the identification of the machining operations and the machined surfaces, which are related to the unnecessarily tight resultant tolerances caused by the process plan, a rooted tree representation of the tolerance chart is introduced, and its use is demonstrated. An example is presented to illustrate the new method. This research introduces a new quantitative process plan evaluation method that may lead to the optimization of process plans.

An Expert System for the Process Planning of the Elliptical Deep Drawing Transfer Die (타원형 디프 드로잉 트랜스퍼 금형의 공정설계 전문가 시스템(I))

  • 박동환;박상봉;강성수
    • Korean Journal of Computational Design and Engineering
    • /
    • v.5 no.3
    • /
    • pp.255-262
    • /
    • 2000
  • A computer-aided process planning (CAPP) system for rotationally symmetric deep drawing products has been developed. The application for non-axisymmetric components, however, has not been reported yet. Therefore, this study investigates process sequence design in deep drawing process and constructs an expert system of process planning for non-axisymmetric motor frame products with elliptical shape. The system developed consists of four modules. The first one is recognition of shape module to recognize the products. The second one is a 3-D modeling module to calculate surface area for non-axisymmetric products. The third one is a blank design module that creates an oval-shaped blank with the identical surface area. The forth one is a process planning module based on production rules that play the best important role in an expert system for manufacturing. The production rules are generated and upgraded by interviewing with field engineers. The constructed system using AutoLISP language under the AutoCAD environment is baled on the knowledge base system which is involved a lot of expert's technology. Results of this system will be provide effective aids to the designer and engineer in this field.

  • PDF

Design of Integrated Process-Based Model for Large Assembly Blocks Considering Resource Constraints in Shipbuilding (자원제약을 고려한 조선 대조립 공정의 통합 프로세스 기반 모델 설계)

  • Jeong, Eunsun;Jeong, Dongsu;Seo, Yoonho
    • Journal of the Korea Society for Simulation
    • /
    • v.28 no.2
    • /
    • pp.107-117
    • /
    • 2019
  • Because shipbuilding is single-product production with limited resources, production management technology is essential to manage the resources effectively and maximize the productivity of ship-process. Therefore, many shipbuilding companies are conducting research on ship production plan and process considering various constraints in the field by applying modeling and simulation. However, it is difficult to provide accurate production plan on sudden schedule and process changes, and to understand the interconnectivity between the processes that produce blocks in existing research. In addition, there are many differences between the production planning and field planning because detailed processes and quantity of blocks can not be considered. In this research, we propose the integrated process-based modeling method considering process-operation sequences, BOM(Bill of materials) and resource constraints of all the scheduled blocks in the indoor system. Through the integrated process-based model, it is easy for the user to grasp the assembly relationship, workspace and preliminary relationship of assembly process between the blocks in indoor system. Also, it is possible to obtain the overall production plan that maximizes resource efficiency without the separate simulation and resource modeling procedures because resource balancing that considers the amount of resource quantity shared in the indoor system is carried out.