• Title/Summary/Keyword: System Design Model

Search Result 10,564, Processing Time 0.034 seconds

Deep Learning-based Interior Design Recognition (딥러닝 기반 실내 디자인 인식)

  • Wongyu Lee;Jihun Park;Jonghyuk Lee;Heechul Jung
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.19 no.1
    • /
    • pp.47-55
    • /
    • 2024
  • We spend a lot of time in indoor space, and the space has a huge impact on our lives. Interior design plays a significant role to make an indoor space attractive and functional. However, it should consider a lot of complex elements such as color, pattern, and material etc. With the increasing demand for interior design, there is a growing need for technologies that analyze these design elements accurately and efficiently. To address this need, this study suggests a deep learning-based design analysis system. The proposed system consists of a semantic segmentation model that classifies spatial components and an image classification model that classifies attributes such as color, pattern, and material from the segmented components. Semantic segmentation model was trained using a dataset of 30000 personal indoor interior images collected for research, and during inference, the model separate the input image pixel into 34 categories. And experiments were conducted with various backbones in order to obtain the optimal performance of the deep learning model for the collected interior dataset. Finally, the model achieved good performance of 89.05% and 0.5768 in terms of accuracy and mean intersection over union (mIoU). In classification part convolutional neural network (CNN) model which has recorded high performance in other image recognition tasks was used. To improve the performance of the classification model we suggests an approach that how to handle data that has data imbalance and vulnerable to light intensity. Using our methods, we achieve satisfactory results in classifying interior design component attributes. In this paper, we propose indoor space design analysis system that automatically analyzes and classifies the attributes of indoor images using a deep learning-based model. This analysis system, used as a core module in the A.I interior recommendation service, can help users pursuing self-interior design to complete their designs more easily and efficiently.

Project Selection & Evaluation System Design and Implementation-Literature Review and Case Study- (연구과제 선정.평가 체계설계에 관한 연구)

  • 용세중;최덕출;한종우;정용훈;이원영
    • Journal of Technology Innovation
    • /
    • v.2 no.1
    • /
    • pp.116-141
    • /
    • 1994
  • This paper presents a model for R&D project selection and evaluation system design developed through literature review. The model emphasizes the fitness between the five elements of the system : evaluation phase and purpose, personnel and organization, evaluation critiria and decision model, evaluation form and procedure, and projects. The model was applied in real situation as a test case. The important findings are that a good project selection and evaluation model contributes only partially to the effectiveness of the project selection and that system development and implementation activity is a dynamic and multi-facetted learning process.

  • PDF

A Study on the Application of the Tourist Attraction System Model and the Tourism Destination Region Design Model to Analyzing the Eastern Pusan Resort Master Plan (관광매력물시스템모형과 관광목적지역디자인모형을 응용한 동부산권관광단지개발계획안 분석에 관한 연구)

  • 양위주
    • Journal of Korean Port Research
    • /
    • v.14 no.3
    • /
    • pp.279-290
    • /
    • 2000
  • The purpose of this study is to suggest the analytical framework for a spatial structure of a tourism destination master plan by the two types of the tourism development models: Tourist attraction System Model and Tourism Destination Region Design Model. The resort development plan is introduced as a planning tool for regenerating the eastern Pusan regions, but the economic and environmental impacts and the sociocultural dilemma accompanied by the development should be fully considered before launching the business. The development plan announced currently is traced and examined in comparison with the upper-leveled and related plans. The Tourist Attraction System Model based on the systems theory is applied to the designated regions. The Tourism Destination Region Design Model then is applied for analyzing the components of each region on the master plan. The results of the findings suggest that the tourism destination plan is basically different from a general master plan on the physical comprehensive plan, the destination is recognized as a subsystem of the whole tourism system, and thus tourism destination plan is considered as a spatial arrangement of tourism facilities and the inter- and intra-circulation.

  • PDF

A Collaborative Design System in Architecture: defining the process and testing its system environment (建築 協業設計 시스템 구축을 위한 프로세스와 環境 試險에 관한 연구)

  • Kim, U.;Kang, M.H.;Choi, J.W.;Kim, S.A.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.7 no.1
    • /
    • pp.57-65
    • /
    • 2002
  • The purpose of this research is to develop a collaborative architectural design system. Design collaboration requires an extensive use of communication methods as well as the participation of various experts from different domains. Such facts address several issues when the Internet and digital media are able to create a completely new work environment. The building design process was studied, and possible modes of design collaboration were defined. A prototype system is being developed in accordance with the defined collaboration model. The system integrates a set of communication tools and web-based design media. Such media include a synchronous multi-user web CAD tool, a schematic 3D design tool, and a electronic whiteboard. A project database was designed in order to coordinate the project-wide communication which elaborates technologies such as web-based data access. In order to find out the effectiveness of the system, a usability test was performed both in quantitative and qualitative manner. The research will contribute to the development of world-wide design and construction collaboration through the Internet, which is becoming a mainstream building process model.

PI Controller Design of the Refrigeration System Based on Dynamic Characteristic of the Second Order Model

  • Jung, Young-Mi;Jeong, Seok-Kwon;Yang, Joo-Ho
    • Journal of Power System Engineering
    • /
    • v.18 no.6
    • /
    • pp.200-206
    • /
    • 2014
  • This paper deals with deterministic PI controller design based on dynamic characteristics for refrigeration system. The temperature control system of an oil cooler is described as a typical 2nd order model of the refrigeration system which has zeros in a transfer function. PI controller gains satisfying control specifications are represented by the dynamic characteristic functions using relationship between the parameters and the control specifications in the model. Phase margin was considered to increase robustness of the oil cooler control system. Furthermore, the influence of zeros in the model to the control specifications was analyzed in detail for improving control performance. The validity of the suggested PI controller design was investigated using the four types of gains which had been already confirmed their control performances through experiments.

Design of a Feature-based Multi-viewpoint Design Automation System

  • Lee, Kwang-Hoon;McMahon, Chris A.;Lee, Kwan-H.
    • International Journal of CAD/CAM
    • /
    • v.3 no.1_2
    • /
    • pp.67-75
    • /
    • 2003
  • Viewpoint-dependent feature-based modelling in computer-aided design is developed for the purposes of supporting engineering design representation and automation. The approach of this paper uses a combination of a multi-level modelling approach. This has two stages of mapping between models, and the multi-level model approach is implemented in three-level architecture. Top of this level is a feature-based description for each viewpoint, comprising a combination of form features and other features such as loads and constraints for analysis. The middle level is an executable representation of the feature model. The bottom of this multi-level modelling is a evaluation of a feature-based CAD model obtained by executable feature representations defined in the middle level. The mappings involved in the system comprise firstly, mapping between the top level feature representations associated with different viewpoints, for example for the geometric simplification and addition of boundary conditions associated with moving from a design model to an analysis model, and secondly mapping between the top level and the middle level representations in which the feature model is transformed into the executable representation. Because an executable representation is used as the intermediate layer, the low level evaluation can be active. The example will be implemented with an analysis model which is evaluated and for which results are output. This multi-level modelling approach will be investigated within the framework aimed for the design automation with a feature-based model.

Dynamics Model of a Moving Walk with DADS Program and Design Change for the Improvement of Ride Quality (DADS 프로그램을 이용한 자동보도의 모델링 및 승차감 개선에 관한 연구)

  • 신봉헌;유완석
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.12
    • /
    • pp.159-167
    • /
    • 2003
  • In this paper, a two-dimensional multibody DADS model of a moving walk is developed to improve the ride quality of a moving walk system. The proposed DADS model is able to estimate the longitudinal acceleration of moving walk system, which is the more sensitive and important than other accelerations. To show the validity of the developed model, the longitudinal accelerations of pallet obtained from the computer simulations are compared to the experimental data in frequency domain. Then, the factorial design technique is applied to determine the main design factor and to improve the ride quality. The change of the spring compression in the lower part of the tension generating system improved the ride quality of the moving walk system.

Development of a Pipe Modeling System based on the Hull Structural Model Applying the Rapid Pipe Routing Method (쾌속 배관 라우팅 방법을 적용한 선체 구조 모델 기반의 배관 모델링 시스템 개발)

  • Roh, Myung-Il;Choi, Woo-Young;Lee, Kyu-Yeul
    • Korean Journal of Computational Design and Engineering
    • /
    • v.12 no.5
    • /
    • pp.321-329
    • /
    • 2007
  • The present pipe modeling method requires detailed inputs from a designer to generate a pipe model, and thus it takes much time for the designer to perform such task. Moreover, the pipe model has no relation with the hull structure. Thus, it is time-consuming and requires much effort if design changes arise. In this study, a generating method that generates quickly many pipes using a pipe tray and a conversion method that converts automatically the pipes into objects related with the hull structure are proposed. A pipe modeling system based on the proposed methods is developed. The applicability of the developed system is demonstrated by applying it to the generation of the pipe model of a deadweight 300,000 ton VLCC(Very Large Crude oil Carrier). The results show that the developed system can quickly generate the pipe model in relation with the hull structure.

Application of Model-Based Systems Engineering to Large-Scale Multi-Disciplinary Systems Development (모델기반 시스템공학을 응용한 대형복합기술 시스템 개발)

  • Park, Joong-Yong;Park, Young-Won
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.8
    • /
    • pp.689-696
    • /
    • 2001
  • Large-scale Multi-disciplinary Systems(LMS) such as transportation, aerospace, defense etc. are complex systems in which there are many subsystems, interfaces, functions and demanding performance requirements. Because many contractors participate in the development, it is necessary to apply methods of sharing common objectives and communicating design status effectively among all of the stakeholders. The processes and methods of systems engineering which includes system requirement analysis; functional analysis; architecting; system analysis; interface control; and system specification development provide a success-oriented disciplined approach to the project. This paper shows not only the methodology and the results of model-based systems engineering to Automated Guided Transit(AGT) system as one of LMS systems, but also propose the extension of the model-based tool to help manage a project by linking WBS (Work Breakdown Structure), work organization, and PBS (Product Breakdown Structure). In performing the model-based functional analysis, the focus was on the operation concept of an example rail system at the top-level and the propulsion/braking function, a key function of the modern automated rail system. The model-based behavior analysis approach that applies a discrete-event simulation method facilitates the system functional definition and the test and verification activities. The first application of computer-aided tool, RDD-100, in the railway industry demonstrates the capability to model product design knowledge and decisions concerning key issues such as the rationale for architecting the top-level system. The model-based product design knowledge will be essential in integrating the follow-on life-cycle phase activities. production through operation and support, over the life of the AGT system. Additionally, when a new generation train system is required, the reuse of the model-based database can increase the system design productivity and effectiveness significantly.

  • PDF

Optimal Miniaturization of Desk-Top Computer by Thermal Design (열유동 해석을 이용한 컴퓨터 구조의 소형화 설계)

  • 박성관
    • Korean Journal of Computational Design and Engineering
    • /
    • v.4 no.4
    • /
    • pp.318-326
    • /
    • 1999
  • Recently, electronic systems including computers have been rapidly shrinking in size while at the same time the complexity and the capability of these systems continue to grow/sup [1]/. Thus, system volumes have decreased as system power has increased, resulting in dramatic increases in system heat density. The high temperature of the computer system is considered as the major reason for low performance and shortening life of the product. It is necessary to solve this problem due to the heat density increased and to develop the design skill of the computer cabinet according to miniaturization. M4500 desk-top computer was selected for analyzing the thermal management inside cabinet. The cabinet volume, the configuration of the heating devices, the size and location of air ventilation, and the fan selection have been investigated as the important parameters to find out an optimal cabinet design. The objectives of this project were to analyze which design parameters would affect cooling performance by thermal strategy, to design an optimal model, and to measure the temperatures of the main parts to confirm the effect of the thermal design. The temperatures of each part of the optimal model were compared with those of the existing model. As a result. the volume of this miniaturized model was about 16% smaller than that of M4500 without any change in operating performance.

  • PDF