• 제목/요약/키워드: Synchronous Control

검색결과 1,730건 처리시간 0.031초

FAM-PI의 공간벡터 PWM을 이용한 SynRM 드라이브의 고성능 제어 (High Performance Control of SynRM Drive using Space Vector PWM of FAM-PI)

  • 김도연;고재섭;최정식;정철호;정병진;정동화
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.119-121
    • /
    • 2008
  • This paper is proposed a high Performance speed control of the synchronous reluctance motor through the SV-PWM(Space Vector Pulse Width Modulation) of FAM-PI(Fuzzy Adaptive Mechanism-PI). SV-PWM is controlled using FAM-PI control. SV-PWM can be maximum used maximum do link voltage and is excellent control method due to characteristic to reducing harmonic more than others. Fuzzy control has a advantage which can be robustly controlled. FAM-PI controller is changed fixed gain of PI controller using fuzzy adaptive mechanism(FAM) to match operating condition. The results on a speed controller of IPMSM are presented to show the effectiveness of the proposed gain tuner. And this controller is better than the fixed gains one in terms of robustness, even under great variations of operating conditions and load disturbance.

  • PDF

지구자기장을 이용한 소형과학위성의 자세조정 (ATTITUDE CONTROL OF SMALL SCIENTIFIC SATELLITE USING GEOMAGNETISM)

  • 배성구;석재호;최규홍
    • Journal of Astronomy and Space Sciences
    • /
    • 제8권1호
    • /
    • pp.85-98
    • /
    • 1991
  • 지구의 남극과 북극 주위를 저고도로 돌고 있는 소형 과학위성의 자세 조정을 위해 지구자기장을 이용하였다. 이것을 위해 소형 과학위성의 Telemetry 자료를 분석하였다. 위성에 장치된 3축 magnetometer에서 자기장 성분의 크기와 변동량을 측정하여 위성의 회전상태를 알아내는 방법이 제시되었다. 위성이 회전축에 대하여 대칭형인 경우 특정한 위치에서의 자세판단이 가능하다. 현재 자세와 원하는 자세를 비교했을 때 나타나는 차이를 각 축에 대한 회전속도의 조절로 제거할 수 있는 방법을 연구하였다. 여기에서는 자세 측정으로부터 얻은 자료를 가지고 magnetorquer에 공급되어야 할 전류의 크기(혹은 유지시간)를 계산하는 기본 알고리즘을 연구하였고 직접 프로그램으로 작성해서 수행시켜 보았다. 이러한 자세제어 방법은 위성이 초기 tumbling 운동을 할 때와 Gravity gradient boom에 의한 수동제어가 이루어진 후에 적용할 수 있다.

  • PDF

인덕턴스 변화에 강인한 계통연계형 인버터의 복소 벡터 전류제어기 (Complex Vector Current Control of Grid Connected Inverter Robust for Inductance Variation)

  • 이태진;조종민;신창훈;차한주
    • 전기학회논문지
    • /
    • 제65권10호
    • /
    • pp.1648-1654
    • /
    • 2016
  • This paper analyzes complex vector current control for the enhanced cross-coupling compensation in accordance with parameter variation in grid-connected inverter system, and verifies through simulation and experiment. Complex vector current control is performed in the synchronous reference frame through d-q transformation. It generates cross-coupling components with rotating nominal angular frequency. In general, cross-coupling elements are compensated by decoupling terms added to output of conventional decoupling PI controller. But, it is impossible to compensate them perfectly which transient response is especially deteriorated such as large overshoot and slow tracking, when variation of grid impedance or measurement error occurs. However, complex vector current control can improve stability and response characteristic of current control regardless of the situation as before. Decoupling controller and complex vector controller are represented through complex forms, and these controllers are analyzed by using frequency response in s-domain, respectively. It is verified that complex vector controller has more superior response characteristic than decoupling controller through MATALB, PSIM and experimental in 5kW grid-connected inverter when L filter parameter is varied from 1.1mH to increase double, 2.2mH.

Sensorless Control Method in IPMSM Position Sensor Fault for HEV

  • Kim, Sung-Joo;Lee, Yong-Kyun;Lee, Ju-Suk;Lee, Kwang-Woon;Kwon, Taesuk;Mok, Hyungsoo
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권5호
    • /
    • pp.1056-1061
    • /
    • 2013
  • The widely used motors in HEV(Hybrid Electric Vehicles) are IPMSM(Interior Permanent Magnet Synchronous Motor) which has no rotor heat, higher efficiency and advantageous in volume and weight comparing with other motors. For vector control of IPMSM, position information of rotor is required but Resolver is mainly used as the detecting sensor. However, the use of position sensors will reduce the system reliability of hybrid electric vehicles. In this paper, a way to control the motor by sensorless was proposed at the event of sensor failure. We also implemented IPMSM sensorless operation by the expanded EMF(Electro Motive Force) voltage way and harmonic voltage which is applying in the low speed area. And we proposed how to change with sensorless control by detecting the position sensors failure and verified it through experiments.

회전자 속도보상을 이용한 센서리스 유도전동기 제어 시스템 (Speed-Sensorless Induction Motor Control System using a Rotor Speed Compensation)

  • 정강률
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제54권3호
    • /
    • pp.154-161
    • /
    • 2005
  • This paper proposes a speed-sensorless induction motor control system using a rotor speed compensation. To explain the proposed system, this paper describes an induction motor model in the synchronous reference frame for the vector control. The rotor flux is estimated by the rotor flux observer using the reduced-dimensional state estimator technique. The estimated rotor speed is directly obtained from the electrical frequency, the slip frequency, and the rotor speed compensation with the estimated q-axis rotor flux. The error of the rotor time constant is indirectly reflected in the rotor speed compensation using the compensation of the flux error angle. To precisely estimate the rotor flux, the actual value of the stator resistance, whose actual variation is reflected, is derived. An implementation of pulse-width modulation (PWM) pulses using an effective space vector modulation (SVM) is briefly mentioned. For fast calculation and improved performance of the proposed algorithm, all control functions are implemented in software using a digital signal processor (DSP) with its environmental circuits. Also, it is shown through experimental results that the proposed system gives good performance for the speed-sensorless induction motor control.

A Novel Discrete-Time Predictive Current Control for PMSM

  • Sun, Jung-Won;Lee, Jin-Woo;Suh, Jin-Ho;Lee, Young-Jin;Lee, Kwon-Soon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.2503-2508
    • /
    • 2005
  • In this paper, we propose a new discrete-time predictive current controller for a PMSM(Permanent Magnet Synchronous Motor). The main objectives of the current controllers are to ensure that the measured stator currents tract the command values accurately and to shorten the transient interval as much as possible, in order to obtain high-performance of ac drive system. The conventional predictive current controller is hard to implement in full digital current controller since a finite calculation time causes a delay between the current sensing time and the time that it takes to apply the voltage to motor. A new control strategy in this paper is seen the scheme that gets the fast adaptation of transient current change, the fast transient response tracking. Moreover, the validity of the proposed method is demonstrated by numerical simulations and the simulation results will present the improvements of predictive controller and accuracy of the current controller.

  • PDF

NFC와 ANN을 이용한 IPMSM 드라이브의 속도 추정 및 제어 (Speed Estimation and Control of IPMSM Drive using NFC and ANN)

  • 이정철;이홍균;정동화
    • 전력전자학회논문지
    • /
    • 제10권3호
    • /
    • pp.282-289
    • /
    • 2005
  • 본 논문에서는 NFC(Neuro-Fuzzy Controller)와 ANN(Artificial Neural network) 제어기를 이용한 IPMSM의 속도 제어 및 추정을 제시한다. PI 제어기에서 나타나는 문제점을 해결하기 위하여 신경회로망과 퍼지제어를 혼합적용한 NFC를 설계한다. 신경회로망의 고도의 적응제어와 퍼지 제어기의 강인성 제어의 장점들을 접목한다. 다음은 ANN을 이용하여 IPMSM 드라이브의 속도 추정기법을 제시한다. 2층 구조를 가진 신경회로망에 BPA(Back Propagation Algorithm)를 적용하여 IPMSM 드라이브의 속도를 추정한다. 추정속도의 타당성을 입증하기 위하여 시스템을 구성하여 제어특성을 분석한다.

IPMSM 드라이브의 속도제어를 위한 적응 FNN제어기의 설계 (Design of Adaptive FNN Controller for Speed Contort of IPMSM Drive)

  • 이정철;이홍균;정동화
    • 전자공학회논문지SC
    • /
    • 제41권3호
    • /
    • pp.39-46
    • /
    • 2004
  • 본 논문은 IPMSM 드라이브의 고성능 속도 제어를 위하여 퍼지제어와 신경회로망을 혼합 구성한 적응 FNN 제어기를 제시한다. 적응 FNN 제어기는 기준 모델에 기초한 적응 메카니즘을 적용하여 신경회로망의 고도의 적응제어와 퍼지제어기의 강인성 제어의 장점들을 접목한다. 적응 FNN 제어기의 출력은 FNN 제어기의 출력과 적응 퍼지제어의 출력을 합하여 출력을 얻는다. 적응 FNN 제어기는 다양한 동작조건에서 응답특성을 분석하고 평가한다. 제시한 적응 FNN 제어기의 타당성은 IPMSM 드라이브 시스템에 적용하여 성능 결과로 입증한다.

The Effect of Asynchronous Carrier on Matrix Converter Characteristics

  • Oyama, Jun;Higuchi, Tsuyoshi;Abe, Takashi;Yamada, Eiji;Hayashi, Hideki;Koga, Takashi
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1998년도 Proceedings ICPE 98 1998 International Conference on Power Electronics
    • /
    • pp.512-517
    • /
    • 1998
  • In a matrix converter, input side and output side are coupled with each other through switching elements. Since disturbances on either side affect directly on the other side, it requires a high-speed on-line control system to compensate them. We proposed in previous papers a new control strategy and an on-line control circuit for a matrix converter. The control circuit could keep the output voltage at commanded value against fluctuation in the supply voltage. Furthermore wave forms of the output voltage and the input current were always kept sinusoidal. The switching pattern was generated by comparing modified voltage references with a carrier. The carrier was synchronized with the supply voltage using a PLL system, which made the control circuit complicated and costly. This paper discusses on the possibility of an asynchronized carrier. Experiment results show the input current distortion in case of asynchronous carrier is bigger than that of synchronous carrier. However, the deterioration can be minimized by increased carrier frequency.

  • PDF

Effects of Wind Generation Uncertainty and Volatility on Power System Small Signal Stability

  • Shi, Li-Bao;Kang, Li;Yao, Liang-Zhong;Qin, Shi-Yao;Wang, Rui-Ming;Zhang, Jin-Ping
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권1호
    • /
    • pp.60-70
    • /
    • 2014
  • This paper discusses the impacts of large scale grid-connected wind farm equipped with permanent magnet synchronous generator (PMSG) on power system small signal stability (SSS) incorporating wind generation uncertainty and volatility. Firstly, a practical simplified PMSG model with rotor-flux-oriented control strategy applied is derived. In modeling PMSG generator side converter, the generator-voltage-oriented control strategy is utilized to implement the decoupled control of active and reactive power output. In modeling PMSG grid side converter, the grid-voltage-oriented control strategy is applied to realize the control of DC link voltage and the reactive power regulation. Based on the Weibull distribution of wind speed, the Monte Carlo simulation technique based is carried out on the IEEE 16-generator-68-bus test system as benchmark to study the impacts of wind generation uncertainty and volatility on small signal stability. Finally, some preliminary conclusions and comments are given.