• Title/Summary/Keyword: Symmetric Mode

Search Result 272, Processing Time 0.028 seconds

On the Forced Vibration in the Nonlinear Symmetric Structure by Using the Normal Modes (정규모우드를 활용한 비선형 대칭구조물의 강제진동해석)

  • 박철희;최성철
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.21-28
    • /
    • 1994
  • The forced vibration with the symmetric boundary condition in nonlinear structure is studied by utilizing the characteristic of the free vibration which have two modes with the similar natural frequency. Two linear modes exist to have no concern with the amplitude. It is found that the normal mode or elliptic orbit as the newly coupled modes is generated in accordance with changing the stability. It is also known that responses for forced vibration having the small external force and damping are near mode of free vibration and the stability for each response is determined according to the stability for each response is determined according to the stability in mode of free vibration. Finally the stability and bifurcation are analyzed in proportion to increment of external force and damping.

  • PDF

Instability of High-Speed Impinging Jets(I) (고속 충돌제트의 불안정특성)

  • Gwon, Yeong-Pil
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.4
    • /
    • pp.452-458
    • /
    • 1998
  • The objective of this study is to obtain the unstable characteristics of the high-speed two-dimensional jet impinging normally onto a flat plate. The study is based on the feedback model and the experiment of the frequency characteristics of the impinging tones. Using the experimental data for the tonal frequencies of the impinging tones the convection speed of the unstable jet is obtained along with all the other features. Three kinds of unstable modes are clarified: asymmetric $A_{1}$ and $A_{2}$ and symmetric S. The condition for the excitation of each mode is found in terms of Strouhal number and Reynolds number. The convection speed is estimated and discussed in comparison with existing theoretical models. It is found that the convection speed increases with frequency when the mode is asymmetric, but decreases when it is symmetric. In addition, the characteristics of the high-speed impinging jet are compared with the low-speed impinging jet.

Driving Characteristic of Ultrasonic Linear Motor With V-type (V-형 선형 초음파 모터의 구동 특성)

  • Jeong, Seong-Su;Park, Tae-Gone
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.5
    • /
    • pp.425-429
    • /
    • 2007
  • A linear ultrasonic motor was designed by a combination of the longitudinal and bending mode. linear ultrasonic motors are based on an elliptical motion on the surface of elastic body, such as bar or plates. The corresponding eigen-mode of one resonance frequency can be excited twice at the same time with a phase shift of 90 degrees in space and time. That is excite symmetric and anti-symmetric modes. Then it determines the thrust and speed of the motor. Linear ultrasonic motors are investigated experimentally in according to be fabricated a general classification to motor structure and material characteristic. There was the first to simulate as use of finite element analysis ANSYS 9.0. The AL-T2W8-ARM14-LEG18-ANGLE80 motor has a maxim efficiency 18 % under the speed 0.14 m/s, thrust 345 gf and preload 280 gf, operating frequency is 57.6 kHz.

A Study on The Driving Characteristics of Ultrasonic Linear Motor Using Symmetric And Anti-Symmetirc Resonance Modes (대칭-비대칭 공진모드를 이용한 초음파 리니어 모터의 구동특성 연구)

  • Choi, Myeong-Il;Bae, Seok-Myeong;Park, Tae-Gone
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.11
    • /
    • pp.1962-1966
    • /
    • 2007
  • Transducer for ultrasonic linear motor with the symmetric and anti-symmetric modes was studied. The ultrasonic linear motor consists of two Langevin type piezoelectric vibrators that cross at right angles with each other in tip. In order to excite symmetric and anti-symmetric resonance modes, the transducer must have a phase shift of 90 degree in space and time. Therefore, the tip of transducer moves on an elliptical motion. In this paper, the finite element analysis was used to optimize dimension and displacement of the transducer. The ultrasonic motor was fabricated using the simulated result and the driving characteristics were measured. No-load velocity was 0.28[m/s] and the maximum efficiency was 30[%] in resonance frequency.

Localized Surface Plasmon Resonance Coupling in Self-Assembled Ag Nanoparticles by Using 3-Dimensional FDTD Simulation (3차원 FDTD Simulation을 이용한 자기조립된 Ag 나노입자의 국소표면플라즈몬공명 상호작용 현상 연구)

  • Lee, Kyung-Min;Yoon, Soon-Gil;Jeong, Jong-Ryul
    • Korean Journal of Materials Research
    • /
    • v.24 no.8
    • /
    • pp.417-422
    • /
    • 2014
  • In this study, we investigated localized surface plasmon resonance and the related coupling phenomena with respect to various geometric parameters of Ag nanoparticles, including the size and inter-particle distance. The plasmon resonances of Ag nanoparticles were studied using three-dimensional finite difference time domain(FDTD) calculations. From the FDTD calculations, we discovered the existence of a symmetric and an anti-symmetric plasmon coupling modes in the coupled Ag nanoparticles. The dependence of the resonance wavelength with respect to the inter-particle distance was also investigated, revealing that the anti-symmetric mode is more closely correlated with the inter-particle distance of the Ag nanoparticles than the symmetric mode. We also found that higher order resonance modes are appeared in the extinction spectrum for closely spaced Ag nanoparticles. Plasmon resonance calculations for the Ag particles coated with a $SiO_2$ layer showed enhanced plasmon coupling due to the strengthened plasmon resonance, suggesting that the inter-particle distance of the Ag nanoparticles can be estimated by measuring the transmission and absorption spectra with the plasmon resonance of symmetric and anti-symmetric localized surface plasmons.

A Study on Analysis of Mode I interlaminar Fracture Toughness of Foam Core Sandwich Structures (FOAM CORE SANDWICH 구조재의 Mode I 층간분리 파괴인성의 해석에 관한 연구)

  • Son, Se-Won;Gwon, Dong-An;Hong, Seong-Hui
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.9
    • /
    • pp.81-86
    • /
    • 2000
  • This paper was carried out to investigate the characteristics of interlaminar fracture toughness of foam core sandwich structures under opening loading mode by using the double cantilever beam (DCB) specimens in Carbon/Epoxy and foam core composites. instead of using symmetric geometry of DCB specimen non-symmetric DCB specimen was used to calculate the interlaminar fracture toughness. Three approaches for calculating the energy release rate({{{{ {G }_{IC } }}}}) were compared. Fracture toughness of foam core sandwich structures by autoclave vacuum bagging and hotpress were compared and analyzed. Experiment nonlinear beam bending FEM method were performed. Suggested bonding surface compensation and equivalent area inertia moment was used to calculate the energy release rate in nonlinear analytical results. The conclusions among experimental nonlinear analytical and FEM results was observed. The vacuum bagging method was shown to be able to substitute method in stead of autoclave without serious loss of Mode I energy release rate({{{{ {G }_{IC }}}}}) to be able to substitute method in stead of autoclave without serious loss of Mode I energy release rate({{{{ {G }_{IC }}}}}).

  • PDF

A Novel Fast-Switching LCD with Dual-Domain Bend Mode

  • Satake, Tetsuya;Kurata, Tetsuyuki
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.209-212
    • /
    • 2004
  • A navel fast-switching LCD with dual-domain bend (DDB) mode is described DDB alignment is achieved using antiparallel-rubbed cell filled with chiral-doped LC. Initial alignment is mono-domain 180-degree twist. Tilt direction is controlled by oblique electric field to be counter direction in each domain Twist-to-DDB deformation occurs continuously so that DDB mode does not require high-voltage initialization which is inevitable in Optically Compensated Bend (OCB) mode. DDB gives wide and symmetric viewing angle in contrast to mono-domain bend formed from 180-degree twist showing strong asymmetry.

  • PDF

Variation of the Group Velocity of Lamb Wave $S_o$ Mode with the Propagating Direction in the Laminated Unidirectional CFRP Plates (단일방향 탄소섬유복합재료 적층 판에서 전파 방향에 따른 램파 $S_o$ 모드의 군속도의 변화)

  • Kim Young H.;Lee Seung Seok;Kim Ho Chul;Lee Jeong Ki
    • Composites Research
    • /
    • v.18 no.1
    • /
    • pp.38-44
    • /
    • 2005
  • In this paper, the group velocity dispersion curves of the $S_o$ symmetric mode in unidirectional CFRP plate was calculated as varying the propagating direction. The group velocity curve was obtained with the group velocities of the $S_o$ symmetric mode corresponding to 0.2 MHz-mm under the first cut-off frequency in the dispersion curves, and corrected by introducing the slowness curve. The velocities of the $S_o$ symmetric mode in the unidirectional CFRP plate were measured as varying the propagating direction and compared with the col?rotted group velocity curve. The measured velocities were good agreement with the corrected group velocity curve except near the fiber direction which was called the cusp region. It implies that the direction of the group velocities incline toward the fiber direction of the unidirectional CFRP plates when the propagation direction is not accorded with the principal axis. It is supposed that this phenomenon rerults from the preferential propagating the energy toward the direction with the faster propagation velocity.

Vibration Characteristics of the Point-symmetric Mode in a Spherical Piezoelectric Transducer (구형 압전 변환기의 점대칭 방사모드 진동 특성)

  • 전한용;김진오
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.8
    • /
    • pp.757-765
    • /
    • 2002
  • The object of this paper is to examine the vibration characteristics of the point-symmetric radial mode in a spherical piezoelectric transducer. The differential equations of piezoelectric radial motion are derived in terms of the radial displacement and electric potential, which are functions of the radial coordinate and time. Applying mechanical and electrical boundary conditions yields the characteristic equation of radial vibration. Numerical results of the natural frequencies are compared with the experimental measurements. The paper discusses the difference between piezoelectric and elastic resonances and the dependence of the natural frequencies on the radius and thickness of the piezoelectric spheres. As a result it is concluded for the first radial mode that the natural frequency is reduced due to the piezoelectric phenomenon and that the frequency exponentially decreases as the sphere radius increases.

The Relationship Between Group velocity of Lamb wave $S_0$ Mode and Anisotropy in Laminated Unidirectional CFRP Plates (적층 Unidirectional CFRP 판의 이방성과 Lamb wave의 $S_0$ Mode 군속도의 관계)

  • Lee Jeong-kI;Kim Young H.;Lee Seung Suk;Kim Ho Chul
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.272-277
    • /
    • 2004
  • The elastic waves in the plate are dispersive waves with the characteristics of Lamb waves. However, $S_0$ symmetric mode is less dispersive in the frequency region less than first cut-off frequency. And, in anisotropic plates such as CFRP plates, the propagation velocities vary with the direction. So, the wave vector direction to be the phase velocity direction is not accord with the energy flow direction to be the group velocity direction. In this work, the group velocities of the $S_0$ symmetric mode less than the first cut-off frequency was analyzed with the group velocity dispersion curves in unidirectional CFRP plate. And, the group velocity curve obtained by the group velocity dispersion curves are compared with the measured velocities as varied the propagation direction of the Lamb wave. The measured velocities are good agreement with the corrected group velocity curve except near the fiber direction which is called the cusp region. When the propagation direction is not accorded with the principal axis, the direction of the group velocities declines to the fiber direction in the unidirectional CFRP plates. This implies that the energy propagates preferentially toward fiber direction.

  • PDF