• Title/Summary/Keyword: Switching Function

Search Result 707, Processing Time 0.028 seconds

A computer algorithm for implementing the multiple-output switching functions (다출력 스위칭함수의 설계에 관한 계산기 앨고리즘)

  • 조동섭;황희륭
    • 전기의세계
    • /
    • v.29 no.10
    • /
    • pp.678-688
    • /
    • 1980
  • This paper is concerned with the computer design of the multiple-output switching functions by using the improved MASK method in order to obtain the paramount prime implicants (prime implicants of the multiple-output switching function) and new algorithm to design the optimal logic network. All the given minterms for each function are considered as minterms of one switching function to simplify the desigh procedures. And then the improved MASK method whose memory requirement and time consuming are much less than any existing known method is applied to identify the paramount prime implicants. In selecting the irredundant paramount prime implicants, new cost criteria are generated. This design technuque is suitable both for solving a problem by hand or programming it on a digital computer.

  • PDF

A Design of Variable Structure Controller for the General Single Input Systems with Unmeasurable State Variables (측정불가능한 상태변수를 갖는 일반적인 단일 입력 계통에 대한 가변구조 제어기의 설계)

  • 박귀태;최중경
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.7
    • /
    • pp.773-783
    • /
    • 1992
  • There have been several control schemes for the single input systems with unmeasurable state variables using variable structure control(VSC) theory. However, each of them is a study on the systems which can be represented in the phase canonical form or non-phase canonical form dynamic equation separately. As these control algorithms have difficulties in practical application by its theoretical limitations, in this paper we propose a new VSC theory which overcomes those limitations, in this paper we propose a new VSC theory which overcomes those limitations of proposed schemes. This new control scheme can be realized for the general linear systems which have unmeasurable state variables. And the switching function of this VSS algorithm consists of measurable state variable function(reduced-order switching function) and its derivatives. Also in the construction of control imput only measurable state variables are used.

  • PDF

The Dimmable Single-stage Asymmetrical LLC Resonant LED Driver with Low Voltage Stress Across Switching Devices

  • Kim, Seong-Ju;Kim, Young-Seok;Kim, Choon-Taek;Lee, Joon-Min;La, Jae-Du
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.5
    • /
    • pp.2031-2039
    • /
    • 2015
  • In the LED lighting industry, the dimming function in the LED lamp is required by demands of many consumers. To drive this LED lighting, various types of power converters have been applied. Among them, an LLC resonant converter could be applied for high power LED lighting because of its high efficiency and high power density, etc. The function of power factor correction (PFC) might be added to it. In this paper, a dimmable single-stage asymmetrical LLC resonant converter is proposed. The proposed converter performs both input-current harmonics reduction and PFC using the discontinuous conduction mode (DCM). Also, the lower voltage stress across switching devices as well as the zero voltage switching (ZVS) in switching devices is realized by the proposed topology. It can reduce cost and has high efficiency of the driver. In addition, the regulation of the output power by variable switching frequency can vary the brightness of a light. In the proposed converter, one of the attractive advantages doesn’t need any extra control circuits for the dimming function. To verify the performance of the proposed converter, simulation and experimental results from a 300W prototype are provided.

A Constructing the Efficiency Multiple Output Switching Function of the Combinational Logic Systems (조합논리시스템의 효율적인 다중출력스위칭함수 구성)

  • Park, Chun-Myoung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.1
    • /
    • pp.41-45
    • /
    • 2017
  • This paper presents a method of constructing the efficiency multiple output switching function of the combinational logic systems. The proposed method reduce the optimized input variable pair and output variable pair after we obtained the final multiple output switching function which was time based multiplexing and obtained the common multiple end node extension logic decision diagram. Also the proposed method have an advantage of the cost, input-output node number, circuit simplification, increment of the arithmetic speed, and more regularity and extensibility compare with previous method.

Path Tracking Controller Design for Surface Vessel Based on Sliding Mode Control Method with Switching Law (슬라이딩 모드 제어와 스위칭 기법에 기반한 수상함의 경로 추종 제어기 설계)

  • Lee, JunKu
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.108-118
    • /
    • 2017
  • In this paper, the path tracking controller for a surface vessel based on the sliding mode control (SMC) with the switching law is proposed. In order to have no restriction on movement and improved tracking performance, the proposed control system is developed as follows: First, the kinematic and dynamic models in Cartesian coordinates are considered to solve the singularity problem at the origin. Second, the new multiple sliding surfaces are designed with the SMC and approach angle concept to solve the under-actuated property. Third, the switching control system is designed to improve tracking performance. To prove the stability of the proposed switching system under the arbitrary switching, the Lyapunov stability analysis method with the common Lyapunov function is used. Finally, the computer simulations are performed to demonstrate the performance, effectiveness and stability of the proposed tracking controller of a surface vessel.

Position Control of Brushless Servo Motor using Variable Structure System (가변구조 시스템을 이용한 브러시리스 서보모터의 위치제어)

  • Cho, Chang-Hee;Won, Jong-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1990.11a
    • /
    • pp.10-14
    • /
    • 1990
  • Variable Structure System(VSS) la being extended to a new control system of ac servo machines for its merits of simple mechanism and robustness. This paper has studied about applying VSS to position control for brushless servo motor. But VSS has the chattering problem of control input. This chattering phenomenon cause acoustic noises, torque ripple and increase harmonics of the current. One of the useful way to eliminate this defect of VSS, linearlizing the switching function is discussed here. Though the conventional method of linearizing the switching function diminishes the chattering, it may degrade the robustness of the system. In this paper, new linearized switching function which shows robust performance to the parametric variation and reduces chattering simultaneously is introduced and assured by simulation.

  • PDF

High Speed Position Control of MM Type LDM (가동자석형 LDM의 고속 위치제어에 관한 연구)

  • Baek, S.H.;Kim, Y.;Ham, J.G.;Lee, J.C.
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.482-484
    • /
    • 1994
  • In this paper, to realize high speed position control of LDM (Linear DC Motor), the minimum time control method is applied. But, In this control method, calculation of non-linear function is required Therefore, in order to avoid this complex calculation, optimum switching of the Bang-Bang control is done on parabola type switching function established in the plane of phase. But, the sliding mode is occurred due to the modeling error of LDM and the variation of parameters. Thereby, the optimum 'control is not realized. In order to realize optimum control, the algorithm to modify switching function is proposed

  • PDF

Method for Removing Reaching Phase in Variable Structure Control Systems Using Bell Type Switching Function (Bell형 스위칭 함수를 이용한 가변구조제어계의 도달기간 제거방법)

  • 김윤업;윤종일;곽군평
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.8
    • /
    • pp.1269-1275
    • /
    • 2002
  • This paper presents a new method for removing reaching phase in variable structure control systems using Bell type switching function. By proposed method, during the entire control process reaching phase is removed. For effective speed control of trapezoidal type brushless DC motor, a time varying switching function based speed controller is developed as illustration.

Induction Motor Position Control Using Integral-Compensating Variable Structure Control Algorithm (적분보상형 가변구조제어기법을 이용한 유도 전동기 위치제어)

  • 강문호
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.6
    • /
    • pp.323-332
    • /
    • 2003
  • This paper proposes a variable structure position controller for an induction motor(IM) which uses a reaching law and an integral compensating nonlinear switching function. With the integral compensating nonlinear switching function, both very low overshoot and high steady state control accuracy can be obtained by compensating the states chattering problem due to the unmodelled dynamics of inverter and feedback sensors. With the reaching law, reaching mode can be established quantitatively during transient state so that dynamic control performance is improved. For experiment a digital servo driver which consists of a DSP and an IPM inverter was developed. With the various experimental results, IM position control performance was verified.

A Construction of the Switching Function by IATP (자동정리증명기법에 의한 스위칭함수 구성)

  • Park, Chun-Myoung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.766-767
    • /
    • 2015
  • This paper propose the method of constructing the switching function based on the IATPT. The proposed method have advantage which is the efficiency, regularity and extensibility and so on compare with earlier methods. We expect the proposed the method be able to contribute the constructing the any digital logic systems.

  • PDF