• Title/Summary/Keyword: Switched-capacitor circuit

Search Result 121, Processing Time 0.024 seconds

New Soft-Switching Current Source Inverter for Photovoltaic Power System

  • Han Byung-Moon;Kim Hee-Joong;Baek Seung-Taek
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.644-649
    • /
    • 2001
  • This paper proposes a soft-switching current -source inverter for photovoltaic power system, which has an H-type switched-capacitor module composed of two semiconductor switches, two diodes, and an L-C resonant circuit. The operation of proposed system was analyzed by a theoretical approach with equivalent circuits and verified by computer simulations with SPICE and experimental works with a hardware prototype. The proposed system could be effectively applied for the power converter of photovoltaic power system interconnected with the power system.

  • PDF

A Study on the Design of a Pulse-Width Modulation DC/DC Power Converter

  • Lho, Young-Hwan
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.3
    • /
    • pp.201-205
    • /
    • 2010
  • DC/DC Switching power converters are commonly used to generate regulated DC output voltages with high-power efficiencies from different DC input sources. A switching converter utilizes one or more energy storage elements such as capacitors, or transformers to efficiently transfer energy from the input to the output at periodic intervals. The fundamental boost converter studied here consists of a power metal-oxide semiconductor field effect transistor switch, an inductor, a capacitor, a diode, and a pulse-width modulation circuit with oscillator, amplifier, and comparator. A buck converter containing a switched-mode power supply is also studied. In this paper, the electrical characteristics of DC/DC power converters are simulated by simulation program with integrated circuit emphasis (SPICE). Furthermore, power efficiency was analyzed based on the specifications of each component.

Soft-switching Current Source Inverter for Photovoltaic Power System (태양광 발전시스템을 위한 소프트스위칭 전류원 인버터)

  • Kim, Hee-Joong;Baek, Seung-Taek;Han, Byung-Moon
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.8
    • /
    • pp.402-407
    • /
    • 2001
  • This paper proposes a soft-switching current source inverter for photovoltaic power system, which has an H-type switched-capacitor module composed of two semiconductor switches, two diodes , and an L-C resonant circuit. The operation of proposed system was analyzed by a theoretical approach with equivalent circuits and verified by computer simulations with SPICE. The feasibility of hardware implementation was verified by experimental works with a prototype. The proposed system could by effectively applied for the photovoltaic power system with high efficiency.

  • PDF

New Soft-Switching Current Source Inverter for a Photovoltaic Power System

  • Han, Byung-Moon;Kim, Hee-Jung;Baek, Seung-Taek
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.3B no.1
    • /
    • pp.37-43
    • /
    • 2003
  • This paper proposes a soft-switching current source inverter for a photovoltaic power system. The proposed inverter has an H-type switched-capacitor module composed of two semiconductor switches, two diodes, and an LC resonant circuit. The operation of the proposed system was analyzed by a theoretical approach with equivalent circuits and was verified by computer simulations with SPICE and experimental implementation with a hardware prototype. The proposed system could be effectively applied for the power converter of photovoltaic power system interconnected with the AC power system.

Novel Gate Driving Circuit for a Ring Type BC Power Supply

  • Harada, Ikko;Oota, Ichirou;Ueno, Fumio
    • Proceedings of the IEEK Conference
    • /
    • 2002.07b
    • /
    • pp.1034-1037
    • /
    • 2002
  • A switched-capacitor(SC) type DC-DC converter having capability of integrated circuit fabrication have been marked for the application of mobile equipments. Especially, a ring type SC power supply is featured by the flexible and dynamic voltage conversion ratio change. In this paper, an improvement of the gate driving techniques is proposed for high power efficiency and less area occupation on the chip. Furthermore, its power-saving operation in the stand-by state is proposed. The three-capacitors ring type power supply is really designed and discussed. As results, the simulation results shows the high efficiency of 92.1%, and the higher output put voltage of 10.5 V compared with conventional one of 8.6 V.

  • PDF

A Design of CMOS 5GHz VCO using Series Varactor and Parallel Capacitor Banks for Small Kvco Gain (작은 Kvco 게인를 위한 직렬 바랙터와 병렬 캐패시터 뱅크를 이용한 CMOS 5GHz VCO 설계)

  • Mi-Young Lee
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.2
    • /
    • pp.139-145
    • /
    • 2024
  • This paper presents the design of a voltage controlled oscillator (VCO) which is one of the key building blocks in modern wireless communication systems with small VCO gain (Kvco) variation. To compensate conventional large Kvco variation, a series varactor bank has been added to the conventional LC-tank with parallel capacitor bank array. And also, in order to achieve excellent phase noise performance while maintaining wide tuning range, a mixed coarse/fine tuning scheme(series varactor array and parallel capacitor array) is chosen. The switched varactor array bank is controlled by the same digital code for switched capacitor array without additional digital circuits. For use at a low voltage of 1.2V, the proposed current reference circuit in this paper used a current reference circuit for safety with the common gate removed more safely. Implemented in a TSMC 0.13㎛ CMOS RF technology, the proposed VCO can be tuned from 4.4GH to 5.3GHz with the Kvco (VCO gain ) variation of less than 9.6%. While consuming 3.1mA from a 1.2V supply, the VCO has -120dBc/Hz phase noise at 1MHz offset from the carrier of the 5.3 GHz.

AC/DC Resonant Converter to Control for DC Arc furnace (직류 전기아크로를 제어하기 위한 전원장치로서의 AC/DC 공진형 컨버터)

  • ;;Jaan Jarvik
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.1
    • /
    • pp.1-8
    • /
    • 2003
  • When solving the problems of electric power quality the converters with high Power factor are useful for the DC arc furnace power supply. In this paper, resonant converters of 50(60) Hz AC to DC arc described, where in each period of network voltage the capacitor and inductor of an oscillatory circuit are switched from series into parallel and vice versa parametrically. The duration of series and parallel connection and also the transformation ratio are dependent on load. Parallel oscillatory circuit restricts the short circuit current. These converters have high power factor from no-load to short-circuit and fit very well to supply are furnaces.

A Digital Automatic Gain Control Circuit for CMOS CCD Camera Interfaces (CMOS CCD 카메라용 디지털 자동 이득 제어 회로)

  • 이진국;차유진;이승훈
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.36C no.5
    • /
    • pp.48-55
    • /
    • 1999
  • This paper describes automatic gain control circuit (AGC) design techniques for CMOS CCD camera interface systems. The required gain of the AGC in the proposed system is controlled directly by digital bits without conventional extra D/A converters and the signal settling behavior is almost independent of AGC gain variation at video speeds. A capacitor-segment combination technique to obtain large capacitance values considerably improves the effective bandwidth of the AGC based on switched-capacitor techniques. A proposed layout scheme for capacitor implementation shows AGC matching accuracy better than 0.1 %. The outputs from the AGC are transferred to a 10b A/D converter integrated on the same chip. The proposed AGC is implemented as a sub-block of a CCD camera interface system using a 0.5 um n-well CMOS process. The prototype shows the 32-dB AGC dynamic range in 1/8-dB steps with 173 mW at 3 V and 25 MHz.

  • PDF

A Digital Readout IC with Digital Offset Canceller for Capacitive Sensors

  • Lim, Dong-Hyuk;Lee, Sang-Yoon;Choi, Woo-Seok;Park, Jun-Eun;Jeong, Deog-Kyoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.12 no.3
    • /
    • pp.278-285
    • /
    • 2012
  • A digital readout IC for capacitive sensors is presented. Digital capacitance readout circuits suffer from static capacitance of sensors, especially single-ended sensors, and require large passive elements to cancel such DC offset signal. For this reason, to maximize a dynamic range with a small die area, the proposed circuit features digital filters having a coarse and fine compensation steps. Moreover, by employing switched-capacitor circuit for the front-end, correlated double sampling (CDS) technique can be adopted to minimize low-frequency device noise. The proposed circuit targeted 8-kHz signal bandwidth and oversampling ratio (OSR) of 64, thus a $3^{rd}$-order ${\Delta}{\Sigma}$ modulator operating at 1 MH was used for pulse-density-modulated (PDM) output. The proposed IC was designed in a 0.18-${\mu}m$ CMOS mixed-mode process, and occupied $0.86{\times}1.33mm^2$. The measurement results shows suppressed DC power under about -30 dBFS with minimized device flicker noise.

A 1V 10b 30MS/s CMOS ADC Using a Switched-RC Technique (스위치-RC 기법을 이용한 1V 10비트 30MS/s CMOS ADC)

  • Ahn, Gil-Cho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.8
    • /
    • pp.61-70
    • /
    • 2009
  • A 10b 30MS/s pipelined ADC operating under 1V power supply is presented. It utilizes a switched-RC based input sampling circuit and a resistive loop to reset the feedback capacitor in the multiplying digital-to-analog converter (MDAC) for the low-voltage operation. Cascaded switched-RC branches are used to achieve accurate grain of the MDAC for the first stage and separate switched-RC circuits are used in the sub-ADC to suppress the switching noise coupling to the MDAC input The measured differential and integral non-linearities of the prototype ADC fabricated in a 0.13${\mu}m$, CMOS process are less than 0.54LSB and 1.75LSB, respectively. The prototype ADC achieves 54.1dB SNDR and 70.4dB SFDR with 1V supply and 30MHz sampling frequency while consuming 17mW power.