• 제목/요약/키워드: Swirl motion

검색결과 92건 처리시간 0.024초

모터링엔진의 흡기포트 유동변화에 따른 텀블생성 및 소멸에 관한 실험적 연구 (An Experimental Study for the Effect of Intake Port Flows on the Tumble Generation and Breakdown in a Motored Engine)

  • 강건용;이진욱;정석용;백제현
    • 대한기계학회논문집
    • /
    • 제18권4호
    • /
    • pp.912-919
    • /
    • 1994
  • The engine combustion is one of the most important processes affecting performance and emissions. One effective way to improve the engine combustion is to control the motion of the charge inside a cylinder by means of optimum induction system design, because the flame speed is mainly determined by the turbulence at compression(TDC) process in S.I. engine. It is believed that the tumble and swirl motion generated during intake stroke breaks down into small-scale turbulence in the compression stroke of the cycle. However, the exact nature of this relationship is not well known. This paper describes the tumble flow measurements inside the cylinder of a 4-valve S.I. engine using laser Doppler velocimetry(LDV) under motoring(non-firing) conditions. This is conducted on an optically assesed single cylinder research engine under motored conditions at an engine speed of 1000rpm. Three different cylinder head intake port configurations are studied to develop a better understanding the tumble flow generation, development, and breakdown mechanisms.

흡입포트형상에 따른 모터링엔진내 압축과정 난류특성 연구 (The Effect of Intake Port Configurations on the Turbulence Characteristics During Compression Stroke in a Motored Engine)

  • 강건용;이진욱;정석용;백제현
    • 대한기계학회논문집
    • /
    • 제18권4호
    • /
    • pp.920-932
    • /
    • 1994
  • The combustion phenomena of a reciprocating engine is one of the most important processes affecting performance and emissions. One effective way to improve the engine combustion is to control the motion of the charge inside a cylinder by means of optimum induction system design, because the flame speed is mainly determined by the turbulence at compression(TDC) process in S.I. engine. It is believed that the tumble and swirl motion generated during intake breaks down into small-scale turbulence in the compression stroke of the cycle. However, the exact nature of their relationship is not well known. This paper describes cycle resolved LDV measurement of turbulent flow inside the cylinder of a 4-valve engine under motoring(non-firing) conditions, and studies the effect of intake port configurations on the turbulence characteristics using following parameters ; Eulerian temporal autocorrelation coefficient, turbulence energy spectral density function, Taylor micro time scale, integral time scale, and integral length scale.

단일 프레임 입자 추적법을 이용한 흡입 2밸브 가솔린 기관의 실린더 내 정상 유동 해석 (Analysis of in-cylinder steady flow for dual-intake-valve gasoline engine using single-frame particle tracking velocimetry)

  • 이창식;이기형;임경수;전문수
    • 대한기계학회논문집B
    • /
    • 제21권5호
    • /
    • pp.650-658
    • /
    • 1997
  • Analysis and control of intake charge motion such as swirl and tumble are very important factors in improving the gasoline engine performance. In this paper, single-frame PTV (particle tracking velocimetry) is used to investigate intake tumble patterns in a steady flow test rig of gasoline engine with dual-intake-valve and pent-roof combustion chamber. Intake tumble pattern is quantified in accordance with blockage ratio of TIV (tumble intensifying valve) with single- frame PTv.The view of the instantaneous 2-D velocity field gives a realistic understanding of in-cylinder flow field. Thus it is confirmed that PTV is a effective tool in engine design. In conventional port, two tumble structures appear clearly, and the larger one is observed under the exhaust valve side and the smaller is right below the intake valve side. The larger vorticity is observed in TIV port, thus it is concluded that TIV have an effect on intensified tumble motion in cylinder flow.

중속 디젤엔진의 실린더 헤드포트 유동 특성 실험 연구 (An Experimental Study of the Flow Characteristics of Cylinder Head Port for Medium-Speed Diesel Engines)

  • 김진원;갈상학
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.790-795
    • /
    • 2001
  • Since the characteristics of combustion and pollutant in Diesel engines were mainly affected by the characteristics of in-cylinder gas flow and fuel spray, an understanding of those was essential to the design of the D.I. Diesel engines. The improvement of volumetric efficiency of air charging into combustion chamber is a primary requirement to obtain better mean effective pressure of an engine. Since the air resistances in intake and exhaust flow passages, valve lift and valve shape influence greatly to the volumetric efficiency, it is very important to investigate the flow characteristics of intake and exhaust port which develops air motion in the combustion chamber. This paper presents the results of an experimental investigation of steady flow through the various kinds of commercial cylinder head ports, and the development procedures of HHI's H21/32 prototype cylinder head ports.

  • PDF

엔진내부 텀블 유동 형성에 대한 수치해석적 연구 (Numerical Study on the Formation of Tumble Motion in Engine Cylinder)

  • 이병서;이준식;유정열
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.2233-2238
    • /
    • 2003
  • It is well known that organized vortex rotations swirl and tumble greatly affect the mixing, the combustion and heat transfer processes in engine cylinder. We have developed 3 dimensional numerical simulation codes whose predictions make good agreement with the experimental data. Large eddy simulation based on Smagorinsky subgrid scale model was adopted to describe the turbulence of in-cylinder flows. The tumble motions generated by different inclination angles between valve-port and cylinder head have been calculated. The results show that the angles between direction of induced flow and cylinder walls which the flow collides with play a great role in the formation and generation of tumble motions. Therefore, it is inferred that seat angle and inclination angle are important factors of engine design. In addition, the numerical results of different engine speed -1000 rpm and 3000 rpm are very similar in the flow structure.

  • PDF

MEPDF를 이용한 와류 연소실 내부 예혼합 화염의 대 와동 모사 (Large Eddy Simulation of Turbulent Premixed Flame in a Swirled Combustor Using Multi-environment Probability Density Function approach)

  • 김남수;김용모
    • 한국연소학회지
    • /
    • 제22권3호
    • /
    • pp.29-34
    • /
    • 2017
  • The multi-environment probability density function model has been applied to simulate a turbulent premixed flame in a swirl combustor. To realistically account for the unsteady flow motion inside the combustor, the formulations are derived for the large eddy simulation. The Flamelet generated manifolds is utilized to simplify a multi-dimensional composition space with reasonable accuracy. The sub grid scale mixing is modeled by the interaction by exchange with the mean mixing model. To validate the present approach, the simulation results are compared with experimental data in terms of mean velocity, temperature, and species mass fractions.

입자추적법을 이용한 가솔린 기관의 실린더 내 정상유동 해석 (Analysis of In-Cylinder Steady Flow for Gasoline Engine Using Particle Tracking Velocimetry)

  • 정구섭;전충환;장영준
    • 한국자동차공학회논문집
    • /
    • 제9권4호
    • /
    • pp.34-43
    • /
    • 2001
  • Analysis and control of intake charge motion such as swirl and tumble are very important to improve the performance of gasoline engines. In this paper, single frame double exposure PTV(particle tracking velocimetry) is used to investigate intake flow characteristic in a steady flow test rig of gasoline engine with 2-valve and pent-roof combustion chamber. To validate this PTV method, we confirmed reliability of this PTV method using chopper, and coaxial burner experiments. The velocity Held of intake flow is measured with the intake valve lift variation. It is shown that maximum flow velocity is increased and tumble flow become stronger than inverse tumble flow as valve lift increase.

  • PDF

포트 마스킹과 흡기 밸브 타이밍이 실린더 내부의 싸이클별 HC와 NOx 생성에 미치는 영향 (Cycle-by-Cycle In-cylinder HC & NOx Formation Characteristics with Port Masking in CVVT Engine)

  • 전우주;최관희;명차리;박심수;이경환
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.3108-3113
    • /
    • 2008
  • This paper investigated the behaviors of combustion characteristics at part load condition with various intake charge motions induced by the port masking schemes in the CVVT (Continuously Variable valve Timing) engine. Time resolved in-cylinder and exhaust emissions were measured by the fast response HC and NOx analyzers to examine their formation mechanisms and behavior characteristics. As a result, in-cylinder HC decreased with the advanced intake valve timings but HC at the exhaust port increased due to the worse combustion stabilities. However HC reduction could be achieved by the application of the port maskings with a enhancement of the engine stability. NOx also decreased with early intake timings by internal EGR but increased with the charge motion controls which enhance the combustion behavior.

  • PDF

사염화탄소($CCl_4$) 소각을 위한 로타리 킬른 소각로 3차원 난류반응 컴퓨터 프로그램 개발( I ) (Development of a 3-Dimensional Turbulent Reaction Computer program for the Incineration of a Carbon Tetrachloride($CCl_4$) ( I ))

  • 엄태인;장동순
    • 한국안전학회지
    • /
    • 제9권1호
    • /
    • pp.100-109
    • /
    • 1994
  • In this study, it is investigated that the possibility of the numerical simulation for the incineration of the hazardous material, crbon tetrachloride($CCl_4$). A 3-dimensional numerical technology is applied for turbulent reacting flows of the full-scale Dow Chemical incinerator. The calculations are made by a CRAY-2S, super computer. The major parameters considered in this study are kiln revolution rate (rpm), filling ratio of the solid waste(f), burner Injection velocity and angle, and turbulent air jets for swirl. And the employed turbulent reaction model is the eddy break-up model which is a kind of fast chemistry model assuming general equilibrium and used for a premixed flame. The calculated flow fields are presented and discussed. 1) The presence of turbulent air nozzles for swirl gives rise to visible increase of the convective motion over the region of the solid waste. This implies the possibility to enhance the mixing of the waste with the surrounding all and thereby to reduce thermal and species stratification, which were reported in a large rotary kiln operation. 2) Considering that the location of the recirculation region has a strong relation with the heating rate of the solid waste, the control of the recirculation region by the burner injection angle Is quite desirable in the sense of the flexible design of the rotary kiln incinerator for a carbon tetrachloride. 3) Finally, it is found that the eddy break-up model Is not suitable for carbon tetrachloride($CCl_4$) because this model is not incorporated the flame inhibition trend due to the presence $CCl_4$compound.

  • PDF

균일 열플럭스가 있는 $180^{\circ}C$ 원형단면 곡관의 선회유동 열전달특성 연구 (A study on the heat transfer characteristics of swirling flow in a circular sectioned $180^{\circ}C$bend with uniform heat flux)

  • 이상배;권기린;장태현
    • 대한기계학회논문집B
    • /
    • 제21권5호
    • /
    • pp.615-627
    • /
    • 1997
  • An experiment was performed to local heat transfer coefficient and Nusselt number in the circular duct of 180.deg. bend for Re=6*10$^{4}$, 8*10$^{4}$ and 1*10$^{5}$ at swirling flow and non-swirling flow conditions. The test tube with circular section was made by stainless which has curvature ratio 9.4. The wall of test tube was heated directly by electrical power to 3.51 kw and swirling motion of air was produced by a tangential inlet to the pipe axis at the 180 degree. Measurements of local wall temperatures and bulk mean temperature of air are made at four circumferential positions in the 16 stations. The wall temperatures show particularly reduced distribution curve at bend for non-swirling flow but this effect does not appear for swirling flow. Nusselt number distributions for swirling flow which was calculated from the measured wall and bulk temperatures were higher than that of non-swirling flow. Average Nusselt number of swirling flow increased about 90 ~ 100% than that of non-swirling flow whole through the test tube. The Nu/N $u_{DB}$ values at the station of 90.deg. for non-swirling flow and swirling flow are respectively about 2.5 and 4.8 at Re=6*10$^{4}$. Also that is good agreement with Said's result for non-swirling flow. flow.