DOI QR코드

DOI QR Code

Large Eddy Simulation of Turbulent Premixed Flame in a Swirled Combustor Using Multi-environment Probability Density Function approach

MEPDF를 이용한 와류 연소실 내부 예혼합 화염의 대 와동 모사

  • Kim, Namsu (Department of Mechanical Engineering, Hanyang University) ;
  • Kim, Yongmo (Department of Mechanical Engineering, Hanyang University)
  • Received : 2017.07.04
  • Accepted : 2017.08.11
  • Published : 2017.09.30

Abstract

The multi-environment probability density function model has been applied to simulate a turbulent premixed flame in a swirl combustor. To realistically account for the unsteady flow motion inside the combustor, the formulations are derived for the large eddy simulation. The Flamelet generated manifolds is utilized to simplify a multi-dimensional composition space with reasonable accuracy. The sub grid scale mixing is modeled by the interaction by exchange with the mean mixing model. To validate the present approach, the simulation results are compared with experimental data in terms of mean velocity, temperature, and species mass fractions.

Keywords

References

  1. J. Lee and Y. Kim, Numerical Study on Turbulent Nonpremixed Pilot Stabilized Flame using the Transport Probability Density Function model, J. Korean Soc. Combust., 15 (2010) 15-21.
  2. R.O. Fox, Computational Models for Turbulent Reacting Flows, Cambridge University Press, Cambridge, 2003.
  3. N. Peters, Turbulent Combustion, Cambridge University Press, Cambridge, 2000.
  4. C. D. Pierce and P. Moin, Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion, J. FLuid Mech. 504 (2004) 73-97. https://doi.org/10.1017/S0022112004008213
  5. J.A. van Oijen, L.P.H. de Goey, Modelling of Premixed Laminar Flames using Flamelet-Generated Manifolds, Combust. Sci. Tech. 161 (2000) 113-137. https://doi.org/10.1080/00102200008935814
  6. A.W. Vreman, An eddy-viscosity subgrid-scale model for turbulent shear flow: Algebraic theory and applications, Phys. Fluids 16 (2004) 3670-3681. https://doi.org/10.1063/1.1785131
  7. G.P. Smith, D.M. Golden, M. Frenklach, N.W. Moriarty, B. Eiteneer, M. Goldenberg, C.T. Bowman, R.K. Hanson, S. Soonho, W.C. Gardiner, Jr., V.V. Lissianski, Z. Qin, GRI mechanism, version 3.0.; 1997. http://www.me/berkeley.edu/gri_mech. (accessed 01.01.16).
  8. D.G. Goodwin, Cantera $C^{{+}{+}}$ user's guide, California Institute of Technology, California, U.S.A (2002).
  9. J. Lee, S. Jeon, Y. Kim, Multi-environment probability density function approach for turbulent $CH_4/H_2$ flames under the MILD combustion condition, Combust. Flame 162 (2015) 1464-1476. https://doi.org/10.1016/j.combustflame.2014.11.014
  10. W. Meier, P. Weigand, X.R. Duan, R. Giezendanner-Thoben, Detailed characterziation of the dynamics of thermoacoustic pulsations in a lean premixed sxiwrl flame, Combust. Flame 150 (2007) 2-26. https://doi.org/10.1016/j.combustflame.2007.04.002
  11. OpenCFD Ltd, OpenFOAM user guide, version 2.2.0, 2011.
  12. S. Roux, G. Lartigue, T. Poinsot, U. Meier, C. Berat, Studies of mean and unsteady flow in a swirled combustor using experiments, acoustic analysis, and large eddy simulations, Combust. Flame 141 (2005) 40-54. https://doi.org/10.1016/j.combustflame.2004.12.007
  13. J. Galpin, A. Naudin, L. Vervisch, C. Angelberger, O. Colin. P. Domingo, Large-eddy simulation of a fuel-lean premixed turbulent swirl-burner, Combust. Flame 155 (2008) 247-266. https://doi.org/10.1016/j.combustflame.2008.04.004
  14. P. Wang, N.A. Platova, J. Frohlich, U. Maas, Large Eddy Simulation of the PRECCINSTA burner, Int. J. Heat Mass Transfer. 70 (2014) 486-495. https://doi.org/10.1016/j.ijheatmasstransfer.2013.11.025