• Title/Summary/Keyword: Swarm Agents

Search Result 23, Processing Time 0.023 seconds

Self-organization of Swarm Systems by Association

  • Kim, Dong-Hun
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.2
    • /
    • pp.253-262
    • /
    • 2008
  • This paper presents a framework for decentralized control of self-organizing swarm systems based on the artificial potential functions (APFs). The framework explores the benefits by associating agents based on position information to realize complex swarming behaviors. A key development is the introduction of a set of association rules by APFs that effectively deal with a host of swarming issues such as flexible and agile formation. In this scheme, multiple agents in a swarm self-organize to flock and achieve formation control through attractive and repulsive forces among themselves using APFs. In particular, this paper presents an association rule for swarming that requires less movement for each agent and compact formation among agents. Extensive simulations are presented to illustrate the viability of the proposed framework.

A Swarm System Design Based on Coupled Nonlinear Oscillators for Cooperative Behavior

  • Kim, Dong-Hun
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.3
    • /
    • pp.301-307
    • /
    • 2003
  • A control system design based on coupled nonlinear oscillators (CNOs) for a self- organized swarm system is presented. In this scheme, agents self-organize to flock and arrange group formations through attractive and repulsive forces among themselves using CNOs. Virtual agents are also used to create richer group formation patterns. The objective of the swarm control in this paper is to follow a moving target with a final group formation in the shortest possible time despite some obstacles. The simulation results have shown that the proposed scheme can effectively construct a self-organized multi-agent swarm system capable of group formation and group immigration despite the emergence of obstacles.

A Self-Organizing Scheme for Swarm Systems

  • Kim, Dong-Hun;Kim, Hong-Pil
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2475-2480
    • /
    • 2003
  • A control system design based on coupled nonlinear oscillators (CNOs) for a self-organized swarm system is presented. In this scheme, agents self-organize to flock and arrange group formations through attractive and repulsive forces among themselves using CNOs. Virtual agents are also used to create richer group formation patterns. The objective of the swarm control in this paper is to follow a moving target with a final group formation in the shortest possible time despite some obstacles. The simulation results have shown that the proposed scheme can effectively construct a self-organized multi-agent swarm system capable of group formation and group immigration despite the emergence of obstacles.

  • PDF

Self-Organization for Multi-Agent Groups

  • Kim, Dong-Hun
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.3
    • /
    • pp.333-342
    • /
    • 2004
  • This paper presents a framework for the self-organization of swarm systems based on coupled nonlinear oscillators (CNOs). In this scheme, multiple agents in a swarm self-organize to flock and arrange themselves as a group using CNOs, which are able to keep a certain distance by the attractive and repulsive forces among different agents. A theoretical approach of flocking behavior by CNOs and a design guideline of CNO parameters are proposed. Finally, the formation scenario for cooperative multi-agent groups is investigated to demonstrate group behaviors such as aggregation, migration, homing and so on. The task for each group in this scenario is to perform a series of processes such as gathering into a whole group or splitting into two groups, and then to return to the base while avoiding collision with agents in different groups and maintaining the formation of each group.

Bio-inspired robot swarm control algorithm for dynamic environment monitoring

  • Kim, Kyukwang;Kim, Hyeongkeun;Myung, Hyun
    • Advances in robotics research
    • /
    • v.2 no.1
    • /
    • pp.1-11
    • /
    • 2018
  • To monitor the environment and determine the source of a pollutant gradient using a multiple robot swarm, we propose a hybrid algorithm that combines two bio-inspired algorithms mimicking chemotaxis and pheromones of bacteria. The algorithm is implemented in virtual robot agents in a simulator to evaluate their feasibility and efficiency in gradient maps with different sizes. Simulation results show that the chemotaxis controller guided robot agents to the locations with higher pollutant concentrations, while the pheromone marked in a virtual field increased the efficiency of the search by reducing the visiting redundancy. The number of steps required to reach the target point did not increase proportionally as the map size increased, but were less than those in the linear whole-map search method. Furthermore, the robot agents could function with simple sensor composition, minimum information about the map, and low calculation capacity.

Observation of Bargaining Game using Co-evolution between Particle Swarm Optimization and Differential Evolution (입자군집최적화와 차분진화알고리즘 간의 공진화를 활용한 교섭게임 관찰)

  • Lee, Sangwook
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.11
    • /
    • pp.549-557
    • /
    • 2014
  • Recently, analysis of bargaining game using evolutionary computation is essential issues in field of game theory. In this paper, we observe a bargaining game using co-evolution between two heterogenous artificial agents. In oder to model two artificial agents, we use a particle swarm optimization and a differential evolution. We investigate algorithm parameters for the best performance and observe that which strategy is better in the bargaining game under the co-evolution between two heterogenous artificial agents. Experimental simulation results show that particle swarm optimization outperforms differential evolution in the bargaining game.

Visualization Tool Design for Searching Process of Particle Swarm Optimization (Particle Swarm Optimization 탐색과정의 가시화를 위한 툴 설계)

  • 유명련
    • Journal of Korea Multimedia Society
    • /
    • v.6 no.2
    • /
    • pp.332-339
    • /
    • 2003
  • To solve the large scale optimization problem approximately, various approaches have been introduced. Recently the Particle Swarm Optimization has been introduced. The Particle Swarm Optimization simulates the process of birds flocking or fish schooling for food, as with the information of each agent is skated by other agents. The Particle Swarm Optimization technique has been applied to various optimization problems whose variables are continuous. However, there are seldom trials for visualization of searching process. This paper proposes a new visualization tool for searching process of Particle Swarm Optimization algorithm. The proposed tool is effective for understanding the searching process of Particle Swarm Optimization method and educational for students. The computational results can be shown tiny and very helpful for education.

  • PDF

Evolving swarm of UAVs

  • Chi, T.Z.;Cheng, Hayong;Page, J.R.;Ahmed, N.A.
    • Advances in aircraft and spacecraft science
    • /
    • v.1 no.2
    • /
    • pp.219-232
    • /
    • 2014
  • This paper reports on an ongoing study investigating the feasibility of using an evolutionary method to develop the rules governing Self-Organised (SO) systems for use in swarms of unmanned aerial vehicles. In general, it is difficult to design swarm systems that follow explicit global behaviour. Unlike optimising a predefined objective function, the solution to the problem is the emergent behaviour in the SO systems which results from simultaneous interactions among agents and between agents and their environment. In this study, evolutionary algorithms are used to investigate their control and effectiveness in synthesising the weighting of different rules on SO emergent behaviour. Both homogeneous swarms and heterogeneous swarms were considered though the results provided are for a case study investigating the simplest problem a homogeneous swarm without mutation. Though simple this study does indicate the potential of the approach.

Study on Enhancing Training Efficiency of MARL for Swarm Using Transfer Learning (전이학습을 활용한 군집제어용 강화학습의 효율 향상 방안에 관한 연구)

  • Seulgi Yi;Kwon-Il Kim;Sukmin Yoon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.361-370
    • /
    • 2023
  • Swarm has recently become a critical component of offensive and defensive systems. Multi-agent reinforcement learning(MARL) empowers swarm systems to handle a wide range of scenarios. However, the main challenge lies in MARL's scalability issue - as the number of agents increases, the performance of the learning decreases. In this study, transfer learning is applied to advanced MARL algorithm to resolve the scalability issue. Validation results show that the training efficiency has significantly improved, reducing computational time by 31 %.

Integrating Ant Colony Clustering Method to a Multi-Robot System Using Mobile Agents

  • Kambayashi, Yasushi;Ugajin, Masataka;Sato, Osamu;Tsujimura, Yasuhiro;Yamachi, Hidemi;Takimoto, Munehiro;Yamamoto, Hisashi
    • Industrial Engineering and Management Systems
    • /
    • v.8 no.3
    • /
    • pp.181-193
    • /
    • 2009
  • This paper presents a framework for controlling mobile multiple robots connected by communication networks. This framework provides novel methods to control coordinated systems using mobile agents. The combination of the mobile agent and mobile multiple robots opens a new horizon of efficient use of mobile robot resources. Instead of physical movement of multiple robots, mobile software agents can migrate from one robot to another so that they can minimize energy consumption in aggregation. The imaginary application is making "carts," such as found in large airports, intelligent. Travelers pick up carts at designated points but leave them arbitrary places. It is a considerable task to re-collect them. It is, therefore, desirable that intelligent carts (intelligent robots) draw themselves together automatically. Simple implementation may be making each cart has a designated assembly point, and when they are free, automatically return to those points. It is easy to implement, but some carts have to travel very long way back to their own assembly point, even though it is located close to some other assembly points. It consumes too much unnecessary energy so that the carts have to have expensive batteries. In order to ameliorate the situation, we employ mobile software agents to locate robots scattered in a field, e.g. an airport, and make them autonomously determine their moving behaviors by using a clustering algorithm based on the Ant Colony Optimization (ACO). ACO is the swarm intelligence-based methods, and a multi-agent system that exploit artificial stigmergy for the solution of combinatorial optimization problems. Preliminary experiments have provided a favorable result. In this paper, we focus on the implementation of the controlling mechanism of the multi-robots using the mobile agents.