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Self-organization of Swarm Systems by Association

Dong Hun Kim

Abstract: This paper presents a framework for decentralized control of self-organizing swarm
systems based on the artificial potential functions (APFs). The framework explores the benefits
by associating agents based on position information to realize complex swarming behaviors. A
key development is the introduction of a set of association rules by APFs that effectively deal
with a host of swarming issues such as flexible and agile formation. In this scheme, multiple
agents in a swarm self-organize to flock and achieve formation control through attractive and
repulsive forces among themselves using APFs. In particular, this paper presents an association
rule for swarming that requires less movement for each agent and compact formation among
agents. Extensive simulations are presented to illustrate the viability of the proposed framework.

Keywords: Cooperative motion, multi-agents, navigation, path planning.

1. INTRODUCTION

Potential field methods have been studied
extensively for the path planning of autonomous
mobile robots in the past decade [1-5]. In this method,
a robot is modeled as a moving particle inside an
artificial potential field that is generated by
superposing an attractive potential that pulls the robot
to a goal configuration and a repulsive potential that
pushes the robot away from obstacles.

Recent years have witnessed a rapidly increasing
interest in managing the group behaviors of swarm
systems, in particular, the coordinated movement of
vehicular swarms, i.e., systems of multiple
autonomous and semi-autonomous vehicles. The
effort to develop engineered swarms has been inspired
by common swarming behaviors in nature such as
insects, birds, fish, or mammals. It is envisioned that
the outcomes of swarm research can impact a wide
variety of applications such as the deployment of
unmanned ground and air vehicles for both military
and civil missions, satellite formations, and large scale
cooperative mobile sensor and device networks, to
name a few. Though a large number of techniques
have been studied in the literature [6-10], it remains a
challenge to offer a general framework that is able to
realize various swarm behaviors in complex
environments and yet at the same time simple enough
for analytical treatment and practical implementation.
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Other recent related papers on formation control
include [11-13]. [13] simulates robots in a line-abreast
formation navigating past way points to a final
destination. Using the terminology introduced in this
article, agents utilize a leader-referenced line
formation. In the studies, a fixed formation is needed
to attain their object. On the other hand, the proposed
association rules employ a flexible formation for
swarming and immigration. Much attention has not
been given to a flexible formation for self-
organization of swarm systems by association, which
is based on local connectivity rather than global. This
paper continues the work of [16] and represents a
modest attempt to offer a simple and effective
framework for coordinating the group behaviors of
swarm systems by association.

The control objective is the coordinated movement
of a group of agents in the presence of multiple and
possibly moving obstacles. There are a number of
essential requirements for swarm movement. First,
there should be no collision among the agents as well
as between agents and obstacles. Secondly, the swarm
should move in a formation or flocking mode. Lastly,
there may be additional optimality type requirements.
In [16], the authors presented a set of analytical
guidelines for designing potential functions to avoid
local minima for a number of representative scenarios.
Specifically the following cases are addressed: 1) a
non-reachable goal problem (a case that the potential
of the goal is overwhelmed by the potential of an
obstacle, 2) an obstacle collision problem (a case that
the potential of the obstacle is overwhelmed by the
potential of the goal), 3) an obstacle collision problem
in swarm (a case that the potential of the obstacle is
overwhelmed by the potential of other robots in a
group formation), and 4) an inter-robot collision
problem (a case that the potential of the robot in a
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formation is overwhelmed by the potential of the goal).

In this paper, the framework explores the benefits
by associating agents based on position information to
realize complex swarming behaviors based on the
same APFs used in [16]. A key development is the
introduction of a set of flocking by APFs that
effectively deal with a host of swarming issues such
as flexible and agile formation. In this scheme,
multiple agents in a swarm self-organize to flock and
achieve formation control through attractive and
repulsive forces among themselves using APFs. The
framework enables agents to maintain a flexible
formation, while migrating as a group and avoiding
any obstacles. Different from previous studies on
swarming strategies [18-23], the purpose of this study
is to explore a set of associations among agents for
swarming that requires less movement for each agent
and compact formation among agents.

This paper is organized as follows. Section 2
discusses the environment and agent model and
introduces the problem statement. In Section 3, we
present a progressive sequence of scenarios involving
designing potential force laws to maintain group
migration and formation and avoid obstacles. In
Section 4, a set of methods for association among
agents to realize swarming behaviors are presented. In
Section 5, simulations of group behaviors using the
proposed methods are carried out to compare total
movements and compactness. Finally, concluding
remarks are collected in Section 6.

2. SWARM MODEL, NOTATION AND
PROBLEM STATEMENT

2.1. Environment and agent model

The formation and maintenance of coherent group
movement has long been studied in natural systems,
and more recently efforts have been made to
reproduce this type of behavior in artificial systems.
There have been extensive simulation studies [22] that
have led to successful synthesis of birds’ behaviors
such as collision avoidance, velocity matching, and
flock centering. Other experiments by the author of
[22] involved evolving groups of artificial creatures.
In [21] it studied the evolving control system of a
group of creatures placed in an environment with
static obstacles and a manually programmed predator
for the ability to avoid obstacles and predation.
Though the results described in the paper were rather
preliminary, evidences indicate that coordinated
motion strategies began to emerge.

The phenomena of swarming in nature has inspired
the interest to engineer large-scale artificial swarms. A
typical artificial swarm system is a large-scale fleet of
cooperative robots. Each robot in such a robotic
swarm can be viewed as an agent. The omni-
directional robot without non-holonomic constraints

can be one of such prototype agent model [23]. They
will likely possess only basic capabilities and mission
specific sensors. Direct communication between
agents may or may not exist. In this paper, the model
of a swarm agent is constructed by building upon an
autonomous agent object. In abstract programming
terms it may also be thought as an object with some
general capabilities. The basic agent possesses only
locomotion as an innate capability. Neighbor position
information may be used for group behaviors such as
flocking and migration. In engineering applications
the sensing limitations of the agents can be overcome
with technologies such as GPS (Global Positioning
System), which is a typical assumption in swarm
systems [6-10].

2.2. Notations
In this section, we introduce the notations used in
this paper.

7 relative position vector

U potential function

F force corresponding to potential function

c strength distance for exponential function

/ correlation distance in exponential function
d positive constant for distance

Superscripts

P position of agent

g group migration

0 obstacle avoidance

og general configuration for group migration
and obstacle avoidance

ogg proposed configuration for group migration
and obstacle avoidance

¥ group formation

oggf proposed configuration for group formation,

migration and obstacle avoidance
th farthest

Subscripts

individual agent index
obstacle index

other individual agent index
group migration

obstacle avoidance

center position

repulsion between two agents
attraction between two agents
group formation

W R Y 0O 0y R~ ™

2.3. Problem statement

The analysis that the authors made propositions for
APFs in [16] is the first step towards dealing with
theoretical treatments of several situations that may
happen in self-organization of swarms. In [16], each



Self-organization of Swarm Systems by Association 255

Potential

Function
Coordination

Perception Behavior
Collision

Avoidance u°

Sensor
Based

Group A
Migration [,/ \]‘L/

U/_oggf

Group
Formation

(//,/

Fig. 1. Behavior architecture.

agent makes self-organization using the position
information of all neighbors to get successive group
behaviors. However, such a scheme requires more
data acquisition followed by time consumption,
Besides, the greater the agents composed in a swarm
system, the heavier the burden required to get position
information by correspondence. We propose a more
simple and effective algorithm that embeds each agent
to only attempt to maintain association depending on
a small number of neighbors, that is, not depending on
all neighbors, which is conventionally used in [7-9]
and [16-23]. In this scheme, the association of an
agent with its neighbors changes with the movement
of the swarm as well as its environment.

The behavior of the swarm system in the proposed
algorithm is largely divided into three parts: group
migration, collision avoidance, and group formation
as shown in Fig. 1. We deal with global behaviors, not
separate behaviors by subsumption coordination based
on priority in [19]. We describe several artificial
potential field techniques satisfying such behaviors.
Path planning using artificial potential fields is based
on an intuitive analogy. The agent is treated as a
particle acting under the influence of a potential field
U, which is modulated to represent the structure of
free space [24]. Typically, obstacles are modeled as
carrying electrical charges, and the resulting potential
field is used to represent the free space. Each of the
individuals in the swarm moves so as to minimize the
total artificial potential energy in the system. In this
paper, localized distributed controls based on APFs
are utilized throughout group behaviors such as group
migration, formation, and obstacle avoidance.

3. GROUP BEHAVIORS

In this section, a self-organized swarm system
controlled by APFs is presented for the group
migration, obstacle avoidance, and group formation.
The behavior of migration in this study is distinct
from that of formation control (e.g., [17]), since the
goal of migration is simply to achieve and maintain
coherent group movement rather than to govern well

organized inter-agent position relationships. Also,
formation control is not an end in itself, but rather can
be used as a component of a multi-agent system,
organizing the nodes of a distributed system.

3.1. APFs for group migration and obstacle avoidance

Before we describe artificial potential fields,
relative position vectors between the agents and the
goal are defined as

\V;’g :Pi_Pgoal’ (1)

where P, isthe goal position.

This relative position vector physically means that
the formation is independent of the absolute position
of the group. That is why each agent controls its
position based on its relative position to the others and
it never has any reference point in its working
environment.

Attraction towards the goal is modeled by attractive
fields, which draws the charged agent towards the
goal in the absence of obstacles. The simple APF for
group migration is modeled as follows.

v 1>

N
Uf =c,(1-e % ), @
where ¢, and [, are the strength and correlation

distance for group migration. The second term Cp i

the right side of (2) acts to make Uf zero when

1
vi =0.
Its corresponding force is then given by the
negative gradient of (2).
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Relative position vectors between the agents and
the obstacles are defined as

v) =P -0, @)

where O ; Is the position of obstacle ; which is a

neighbor of agent 7.

Collision between the obstacles and the agent is
avoided by the repulsive force between them, which is
simply the negative gradient of the potential field. The
simple APF for obstacle avoidance is modeled as
follows.

512

UP=3 fee 3, 3)
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where ¢, and [/, are the strength and correlation

distance for obstacle avoidance. N,; denotes the set

of labels of those obstacles which are neighbors of
agent L

Its corresponding force is then given by the
negative gradient of (5).

uw‘}uz
Iy?

F}OZ—VUO_ Z {
JeNy; 0

) (6)

3.2. Total APFs for path planning

The total potential of conventional configuration in
which the potential for group migration and the
potential for obstacle avoidance are combined
together has an additive structure as follows.

U =U; +U¥

12 i %)
T2 2
= Z {c,e T J—cge 'z +cCg.

JENG;
Its corresponding force is
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If the above potential and force are used, each agent
has common problems [14] such as a narrow passage
between closely spaced obstacles and a non-reachable
goal with obstacles nearby. For this reason, the
authors proposed the following configuration for total
potential to overcome such local minimum problems
[15]. The total potential has a multiplicative and
additive structure between the potential for group
migration and the potential for obstacle avoidance.
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In [15] by the author, the comparison of simulation
results between using (7) and (9) and their analysis
were presented. Now let us consider APFs for group
formation.

3.3. APF for group formation

The group formation behavior seeks to establish a
specific relationship between adjacent neighbors. A
swarm system composed of N number of agents is
considered. Relative position vectors among the
agents are defined as

v/ =P P, (11)

Agents flock together and arrange their formation
through attractive and repulsive forces among
themselves using APFs. The potential function of each
agent for group formation is designed as follows.

vl 1 12
2 2
U/ = 3 fee " —ce ' vl I +ep,
keNﬁ
(12)
where N g denotes the set of labels of those agents
which are neighbors of agent i. ¢,, c,, /., and

[, are the strengths and correlation distances of the

repulsive and attractive forces, respectively. ¢', is
the strength of the auxiliary attractive force.

_f s
2
Cr=—ce I +c,e la ——c'ac'f, (13)
where ¢, = 2 - 2ln "cl‘;]’. ¢y acts to make the
- c

minimum of the potential function zero. The distance
between two agents at the point where Ul.f (k)
minimum is d” :\/E.

The corresponding force is then given by the

negative gradient of (12)
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See Proposition 3 in [16] for the proof of cohesive
behavior for the above potential function and force.

3.4. APFs for group formation, migration, and
obstacle avoidance

Total potential for group formation, migration, and

obstacle avoidance is
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See [16] for analysis of the collision problems that
the proposed APFs may raise in the process of group
formation, migration, and obstacle avoidance. [16]
showed that our formulation of the APFs for group
formation can solve possible local minimum and
collision problems in potential function configuration.
Use of the APFs to keep a formation has a great deal
of flexibility. While maintaining the characteristics of
swarm, each agent wanders about flexibly, i.e. it has a
nature of self-organized flocking that each agent
makes a formation dynamically without explicit

reorganization contrary to [17].
4. ASSOCIATION FOR SWARMING

The agents in the paper would also have the
following characteristics: All agents are physically
and functionally identical. Therefore, they can be
manufactured inexpensively in large numbers, which
would be the case. Furthermore, new agents can be
added to the team whenever necessary. They can be
adapted to various tasks with minimal structural
changes. Individually, agents have limited capabilities
and limited knowledge of the environment. However,
as a swarm, they can exhibit “intelligent behavior”.
Simple individual behavior will result in an intelligent
swarm behavior provided that some type of direct or
indirect communications among agents exists.

4.1. A set of association rules

The full connectivity assumption that each agent
makes self-organization using position information of
all neighbors to get successive group behaviors has
been a popular scheme in the flocking control of a
swarm system. Such a scheme tends to maintain a
cohesive formation among agents.

We propose a simpler and more effective algorithm
that embeds each agent to only attempt to maintain
association with a small number of neighbors, that is,
not depending on all neighbors, as is conventional in
[7-9] and [16-23].

A basic idea to organize the interactions for
swarming is to utilize the mutual attractive and
repulsive effects between the nearest neighbor. We
refer to such an association rule as min-1. Such a
scheme for swarming can be extended to the case with
multiple nearest neighbors by using relative distances.
Association rules considering the two and three
nearest neighbors are referred to as min-2 and min-3,
respectively. Fig. 2 shows an example of a min-2
association rule at a step, where each agent has two
interactions between its neighbors. However,
separation may happen in those cases, where agents
flock in several groups, rather than in a single group,
as shown in Fig. 2.

Consideration of the nearest and farthest neighbors
can be used to make an association rule for swarming,.

1 Group 2 Group

<&

v
P, % P \
0= Ne

P,
Fig. 2. An example of a min-2 association rule at a
step.
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We refer to such an association rule as min-max that
enables agents to flock into a single group. However,
the association of an agent with its farthest neighbor
for swarming requires movements that are too
excessive for all agents. In addition, an agent that
associates with its nearest and farthest neighbors
usually could change the selection of its nearest and
farthest neighbors to excess on a frequent basis. The
phenomenon may cause an agent to go this way and
that. So another association rule that combines the
nearest neighbor and the farthest neighbor together
appropriately would be required.

An association rule that switches the neighbor for
swarming depending on the relative distance to the
farthest neighbor is suggested in order not to cause an
agent to go this way and that. We refer to such an
association rule as min-max hybrid. Before we
describe min-max hybrid, relative position vectors
between the agent and the farthest neighbor are
defined as

v =Pl (7
where P is the position of the farthest neighbor.

H
In the association rule of min-max hybrid, an agent

approaches only its nearest neighbor if \uﬁh is

smaller than threshold value d,,. Otherwise, an

agent approaches only the farthest neighbor for
swarming. In the initial state where all agents scatter
in the distance, an agent would approach its farthest
neighbor. Then, if the relative distance between an
agent and its farthest neighbor is within a certain area,

that is, \yﬁh <dy, the agent would adopt the

association rule of min-1.

To simplify the interactions among the agents,
association rules based on local connectivity are
employed, namely, each agent dynamically associates
itself with only other chosen agents. The min-max
hybrid association rule includes the nearest neighbor
and the farthest neighbor when the relative distance
between an agent and its farthest neighbor is out of a
certain area. On the other hand, when the relative
distance between an agent and its farthest neighbor is
within a certain area, the min-max hybrid association
rule includes only the nearest neighbor. Thus, except
the case that distance between two agents is farther
than designated distance in initial state, association
rule min-1 is employed.

The resulting min-max hybrid association rule
enjoys two important interrelated benefits. Firstly, it
simplifies the interactions in swarm systems. Secondly,
the simplicity of the min-max hybrid rule is
advantageous for practical implementations.

4.2. Simulation of group formation via association
Simulation results are given to investigate the

effectiveness of each association rule and to compare
it. Ten agents are used in the simulations. The initial
positions of all the agents can be randomly generated
as shown in Table 1, but to facilitate comparison they
are chosen to be the same for all the simulations.

Design parameters are set to [, =V/5, 1, =2, ], =
12, 1. =1, ¢, =3, Cq =1, ¢, =1/2, and ¢, =1/3.

Those simulations deal with only group formation
for swarming, not including group migration and
obstacle avoidance. Fig. 3 presents trajectories of
swarming for the algorithms of min-1, min-2, min-3,
min-max, and min-max hybrid, respectively. Table 2
shows total movements and compactness for each
association given in Fig. 3. Total movements means
total distances that all agents moved for all steps.
Compactness for an association rule is computed as
follows:

n
Compactness = Z {P. - P} foreverystep, (18)

i=1

where P, is the center position of all agents and »

is the number of agents.

In the case of min-1, each agent does not flock
together at all as shown in Fig. 3(a). Thus, the value of
compactness, 6.4531 in Table 2 is too high. In this
simulation environment, the value less than 5.0
guarantees a swarm behavior in the view of a
swarming form. Each agent by the association rule of
min-2 swarms in Fig. 3(b) which makes the formation
connectible but not satisfactory. Formation by the
association rule of min-3 shows a satisfactory result in
Fig. 3(c). However, it does not guarantee coherence in
the case of a swarm system composed of more swarm
agents that requires more connection among neighbors
in order to flock to a single group. The association
rule of min-2 is the same as this. In the case of min-
max, some agents go back the way that they have
gone, as indicated in Fig. 3(d), which brings out the
high value of total movements. Thus, the value of
total movements, 23.433 in Table 2 is so high that it
requires lots of energy consumption. Fig. 3(e) shows
trajectories of swarming using the association rule of
min-max hybrid. The association rule guarantees

Table 1. The initial positions of all agents.

Position
(0.5983, 0.5198)
(1.8002, 2.0073)
(1.6053,2.3399)
(0.8976, 1.2355)
(1.9667, 1.9626)

Agent Position

A 1(1.0948,1.2518)| A4,
(1.8864, 1.3397)| A
A (2.4660,2.0877)| A
A, [(1.3001,2.1894)| 4,

10

4, |(1.7504,1.7416)| A

Agent

(%)
£

[=2

~
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Fig. 3. Trajectories of Swarming. (small dot: initial
position, large dor: final position).

Table 2. Total movements and compactness for each

association.

Total movements| Compactness
min-1 1.085 6.4531 (too high)
min-2 4951 4.9347
min-3 9.040 4.1727

min-max 23.433 (too high) 4.4000
min-max-hybrid 6.422 4.7259

coherence and does not cause the agents to separate.
As well, the value of total movement is very
satisfactory. Communication burden can be resolved
somewhat on account that each agent follows the
association rule of min-/ after flocking to a single
group.

Next, consider group behaviors including migration,
formation and obstacle avoidance.

5. SIMULATION OF GROUP BEHAVIORS

As the well-known collective behavior of ants
attacking a larger insect than them with cooperation,
self-organized swarm agents are designed as agents
who migrate to a designated place while keeping a
formation. The task is due to motivations related to
the biological inspirations behind cooperative systems.
Each agent in this task migrates to a goal while
avoiding obstacles, avoiding collision with other
agents and maintaining a formation.

In this section, simulation results are given to
illustrate the effectiveness of the algorithms discussed
in the proceeding sections.

Figs. 4-8 illustrate the different snapshots of a
migration process of ten agents to a goal using min-1,
min-2, min-3, min-max, and min-max hybrid,
respectively. Each agent is randomly initialized on the
left side of x=-2 as shown in Table 3. The goal is
initialized on (0,0). For all the simulations, there are
three circular obstacles centered at (—0.80.8),

(-1.50), and (-0.8-0.8) withradius 0.2.

In Figs. 4-8, the swarm agents spontaneously divide
into several parts by themselves to surpass the

Table 3. The initial positions of all agents.

Agent Position Agent Position
4, (-3.2,1.2) 4, (-4.3, 1.5)
4 3,1 4, (-3.5,0.5)
A (-4, 0) A (-3.5, -0.5)
4, (-3,-1) A (-3.5,-1.5)
A4, (-4.5,-1.2) A, (-3,-0.3)
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- 0 . o) K of® et e o5, * K -
ale T O . O 1-4 min-1 60.913 17.4444
-2 -2 min-2 63.247 11.2952
-3 -3 .
-4 -2 0 -4 -2 0 min-3 33.278 4.9032
3 k=100 3 k=200 min~-max 74.713 2.9401
2 2 min-max-hybrid 65.059 2.0613
o O,z k O L
> 0 * e *D ® ‘}f' 0 ..%-
-1 O -1 blocking area when meeting the obstacle, and finally
-2 -2 form a certain kind of group pattern at the
S & o 2 i o neighborhood of the goal.
X X Association rule min-/ in Fig. 4 indicates the
Fig. 6. Snapshots of migration by the association rule slowest migration compared with the other association

of min-3 (dot: agent, astral mark: moving
target, circle: obstacle).

rules, as a case of the previous swarming behavior.
Association rule min-3 in Fig. 6 shows better
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migration performance than association rule min-2 in
Fig. 5. Association rule min-max in Table 4 indicates
somewhat high total movements, but in Fig. 7, it
reveals better migration performance than association
rule min-2 in Fig. 5. Association rule min-max hybrid
in Fig. 8 presents the best migration performance in
terms of migration speed and lower total movements
than association rule min-max. Note that each agent in
association rule min-max hybrid scheme adopts the
association rule of association rule min-1 after the
relative distance between an agent and its farthest
neighbor is within a certain area.

The relative distances among agents in the process
of formation are adjusted by the selection of design
parameters c¢,, ¢, I, [, in Section 3.3. As for the
collision with inter-agents, the author guaranteed their
coherence and made a set of propositions for the
design parameters in [16].

6. CONCLUSIONS

In this paper, we present a framework for
decentralized control of self-organizing swarm
systems based on the APFs. The framework explores
the benefits by associating agents based on position
information to realize complex swarming behaviors. A
key development is the introduction of an association
rule by APFs that effectively deal with a host of
swarming issues such as flexible and agile formation.
The association rule min-max hybrid for swarming
that requires less movement for each agent and
compact formation among agents is presented and
compared with other possible association rules. The
framework enables the agents in a swarm to maintain
a flexible formation, while migrating as a group and
avoiding any obstacles, as shown in the paper.
Extensive simulation studies coupled with preliminary
analysis [16] illustrate the comparative effectiveness
of association rules. Research is underway for both in-
depth analysis of the proposed framework and micro-
robot based experiments.
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