• Title/Summary/Keyword: Swallowtail butterfly

Search Result 13, Processing Time 0.028 seconds

Aerodynamic Property of Swallowtail Butterfly Wing in Gliding (글라이딩하는 제비나비 날개형상의 공력특성연구)

  • Lee, Byoung-Do;Park, Hyung-Min;Choi, Hae-Cheon
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.395-398
    • /
    • 2007
  • In nature, the swallowtail butterfly is known to be a versatile flyer using gliding and flapping efficiently. Furthermore, it has long tails on the hind-wing that may be associated with the enhancement of the gliding performance. In the present study, we investigate the aerodynamic property of swallowtail butterfly wing in gliding. We use an immersed boundary method and conduct a numerical simulation at the Reynolds numbers of 1,000 - 3,000 based on the free-stream velocity and the averaged chord length for seven different attack angles. As a result, we clearly identify the existence of the wing-tip and leading-edge vortices, and a pair of the streamwise vortices generated along the hind-wing tails. Interestingly, at the attack angle of $10^{\circ},$ hairpin vortices are generated above the center of the body and travel downstream.

  • PDF

Psychological Effects of Insect-Based Experience Activities - Swallowtail Butterfly Case - (곤충을 이용한 치유농업의 심리치유효과 - 호랑나비 사례 -)

  • Kim, So-Yun;Lee, Heui Sam;Park, Haechul;Kim, Seonghyun
    • Journal of Agricultural Extension & Community Development
    • /
    • v.26 no.3
    • /
    • pp.153-163
    • /
    • 2019
  • The study aims to examine the psychological effects of insect-based experience activities. A sample of 167 elementary students was hired for the study. Students in the experimental group participated in insect-based experience activities using swallowtail butterfly. Collected data are analyzed with analysis of variance and paired-sample T-test in SPSS 25.0. The results of this study are as follows 1) Insect based experience activities show positive effects in psychological and physiological aspects, 2) and students and teacher showed high satisfaction in insect-based program. In conclusion, this study contributes to providing fundamental information for the development of agro-healing programs using insect and design guidelines for identifying the characteristics of each healing program. Further research should be extended to different types of student and the development of diverse insect-based activities.

An artificial diet for the swallowtail butterfly, Papilio xuthus

  • Kim, Seonghyun;Hong, Seongjin;Park, Haechul;Lee, Youngbo;Park, Kwanho;Choi, Wonho;Kim, Namjung
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.28 no.1
    • /
    • pp.1-4
    • /
    • 2014
  • The effect of an artificial diet on developmental rate, a life history parameter, was examined for the swallowtail butterfly Papilio xuthus. Artificial insect diets are an essential component of many insect rearing systems that produce insects for research purposes. Complex agar-gelled diets are generally prepared in large batches and used shortly after preparation because the degradation of perishable diet ingredients, such as vitamins and fatty acids, can adversely affect insect quality (Brewer 1984). However, the timing of diet preparation may be inconvenient, and large batches wasteful, if the unused excess is discarded. The percentage of pupation varied considerably, with no significant differences among diets, on which a maximum pupation percentage of 83% was observed. Pellet-type diets were investigated with the aim of developing a more easily prepared diet. The extrusion of the artificial diet under high temperature and pressure may induce desirable chemical and physical changes in the extruded product. The purpose of the present study was to develop an artificial diet for rearing P. xuthus.

Temperature-Dependent Development of the Swallowtail Butterfly, Sericinus montela Gray

  • Hong, Seong-Jin;Kim, Sun Young;Ravzanaadii, Nergui;Han, Kyoungha;Kim, Seong-Hyun;Kim, Nam Jung
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.29 no.2
    • /
    • pp.153-161
    • /
    • 2014
  • The aim of this study is to investigate the effects of ambient thermal environments on the development of swallowtail butterflies (Sericinus montela Gray). Developmental durations and survival rates of S. montela were examined at two crucial developmental stages, embryonic and larval development, at varying temperatures ranging from $15^{\circ}C$ to $35^{\circ}C$. As expected, our results indicated that increasing temperatures decreased the developmental duration and survival rate of the eggs. However, the larvae and pupae showed maximum survival rates at $20.0^{\circ}C$ and $25.0^{\circ}C$, and the represented durations were similar to those of the eggs. Larval development was stage-specific, revealing that the fourth and fifth instars at the later stages were more susceptible to temperature variation. When considering both parameters, the optimal development of S. montela occurred within the temperature range of $20.0-25.0^{\circ}C$. The lower threshold for the complete development of S. montela from eggs to eclosion of adults was calculated at $10.6^{\circ}C$ by linear regression analysis. The estimated value is similar to that of other endemic insects distributed in temperate climate zones, which indicates that S. montela belongs to a small group of swallowtails adjusted to low ambient temperatures. From the results, we predict that the full development of S. montela could be achieved within the temperature range of $17.5-30.0^{\circ}C$. Embryonic development ceased at both test temperature extremes, and no further larval development proceeded after the third instar at $35.0^{\circ}C$. These results suggest that embryogenesis can be significantly influenced by slight variations in the ambient thermal environment that fall below the optimal range.

Molecular cloning of a novel cecropin-like peptide gene from the swallowtail butterfly, Papilio xuthus

  • Kim, Seong-Ryul;Choi, Kwang-Ho;Kim, Sung-Wan;Hwang, Jae-Sam;Goo, Tae-Won;Kim, Iksoo
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.31 no.2
    • /
    • pp.79-84
    • /
    • 2015
  • A new cecropin-like antimicrobial peptide (Px-CLP) gene was isolated from the immunechallenged larvae of the swallowtail butterfly, Papilio xuthus, by employing annealing control primer (ACP)-based GeneFishing PCR. The full-length cDNA of Px-CLP is 310 nucleotides encoding a 70 amino acid precursor that contains a putative 22-residue signal peptide, a 4-residue propeptide, a presumed 37-residue mature peptide, and an uncommon 7-residue acidic pro-region at the C-terminus. The deduced amino acid sequence of Px-CLP showed significant identities with other Lepidopteran cecropin D type peptides. RT-PCR revealed that the Px-CLP transcript was detected at significant level after injection with bacterial lipopolysaccharide (LPS). The peptides with or without C-terminal acidic sequence region were synthesized on-solid phage and submitted to antibacterial activity assay. The synthetic 37-mer peptide (Px-CLPa), which removed C-terminal acidic sequence region, was showed exclusively antibacterial activity against E. coli ML35; meanwhile, a 44-mer peptide (Px-CLPb) with C-terminal acidic peptide region was not active. This result suggests that Px-CLP is produced as a larger precursor containing a C-terminal pro-region that is subsequently removed by C-terminal modification.

Molecular Cloning and Characterization of Attacin from the Swallowtail Butterfly, Papilio xuthus

  • Kim, Seong-Ryul;Hwang, Jae-Sam;Park, Seung-Won;Goo, Tae-Won;Kim, Ik-Soo;Kang, Seok-Woo
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.23 no.2
    • /
    • pp.231-238
    • /
    • 2011
  • Attacin is an insect antibacterial protein that plays an important role in immune response to injury and infection. In this report, we have isolated and characterized of cDNA encoding for the attacin from the immunized larvae of swallowtail butterfly, $Papilio$ $xuthus$. A full length cDNA of $P.$ $xuthus$ attacin was obtained by employing annealing control primer (ACP)-based differential display PCR and 5' RACE. The complete $P.$ $xuthus$ attacin cDNA was comprised of 949 bp encoding a 250 amino acid precursor. It contains a putative 18 amino acid signal peptide sequence, a 42 amino acid propeptide sequence, and a 190 amino acid mature protein with a theoretical molecular mass of 19904.01 and a pI of 9.13. The putative mature protein of $P.$ $xuthus$ attacin showed 48-52% and 24-30% identity in amino acid sequences with that of lepidopteran and dipteran insects, respectively. Semiquantitive RT-PCR results revealed that the transcript of $P.$ $xuthus$ attacin gene was up-regulated at significant levels after injection with bacterial lipopolysaccharide (LPS). We sub-cloned cDNA fragment encoding mature $P.$ $xuthus$ attacin into the expression vector, highly expressed in $E.$ $coli$ BL21 cells, and its antibacterial activity was analyzed. Recombinant $P.$ $xuthus$ attacin evidenced considerably antibacterial activity against Gram-negative bacteria, $E.$ $coli$ ML 35 and $Klebsiella$ $pneumonia$.

Development of a Novel Short Synthetic Antibacterial Peptide Derived from the Swallowtail Butterfly Papilio xuthus Larvae

  • Kim, Seong Ryul;Choi, Kwang-Ho;Kim, Kee-Young;Kwon, Hye-Yong;Park, Seung-Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.9
    • /
    • pp.1305-1309
    • /
    • 2020
  • Insects possess biological defense systems that can effectively combat the invasion of external microorganisms and viruses, thereby supporting their survival in diverse environments. Antimicrobial peptides (AMPs) represent a fast-acting weapon against invading pathogens, including various bacterial or fungal strains. A 37-residue antimicrobial peptide, papiliocin, derived from the swallowtail butterfly Papilio xuthus larvae, showed significant antimicrobial activities against several human pathogenic bacterial and fungal strains. Jelleines, isolated as novel antibacterial peptides from the Royal Jelly (RJ) of bees, exhibit broad-spectrum protection against microbial infections. In this study, we developed a novel antimicrobial peptide, PAJE (RWKIFKKPFKISIHL-NH2), which is a hybrid peptide prepared by combining 1-7 amino acid residues (RWKIFKK-NH2) of papiliocin and 1-8 amino acid residues (PFKISIHL-NH2) of Jelleine-1 to alter length, charge distribution, net charge, volume, amphipaticity, and improve bacterial membrane interactions. This novel peptide exhibited increased hydrophobicity and net positive charge for binding effectively to the negatively charged membrane. PAJE demonstrated antimicrobial activity against both gram-negative and gram-positive bacteria, with very low toxicity to eukaryotic cells and an inexpensive process of synthesis. Collectively, these findings suggest that this novel peptide possesses great potential as an antimicrobial agent.

A Study on Fashion Design Applied by Butterfly Image -Focused on the Application Method of the Nubi by Watersoluble Paper- (나비의 이미지를 응용한 의상 디자인 연구 -수용성부직포에 의한 누비 응용기법을 중심으로-)

  • Heo, Jin-Young;Kim, Hye-Yeon
    • Archives of design research
    • /
    • v.19 no.6 s.68
    • /
    • pp.9-14
    • /
    • 2006
  • There are many paintings describing butterfly in a folk story or old story but the word of Nabby is showed up because korea culture is subject to a Chinese character culture area. the word of Nabby is originated from flying features of nabby. It was expressed to an Hoju(胡蝶:swallowtail) or Hwangjub(黃蝶:yellow butterfly) in old book, Nabby or Naboi in Dusiunhae(杜詩諺解) issued in 1481, Naboi in Hunmonjahoe(訓夢字會) issued in 1527 and Nami in Simongunhaemungmyung(時夢諺解物名) issued in Sookjong dynasty(1675$\sim$1720). After that it was called Nabeui or Nabby and Nabby became the standard language but it is still called Nabbo or Nabbe in some provinces. The butterfly have been called as jewelry spread out through the world and people have been attracted by its meaning (love, pleasure, luck, long life and eternity) and its beautiful figure so that they have collected poems and paintings about it to appreciate its beauty or have made craft works and personal ornaments of it. This research is to analyze the shape and color of the using the application method of the nubi, which is used as expression method in this research, is suitable to express the beauty of butterfly's shape and the nerve of its wings and the basic material, which is light and have good drape, was used to easily express the rhythmical movement of butterfly's flapping. And thus, this research is to present that the above expression method is suitable to express the beautiful expression of butterfly's image and have unlimited potential energy for developing designs. Results showed that the soft outline of butterfly's wings can coincide with the linear shape of human body. It was also found that the characteristics of nubi method could be diversified as material expression method and the Haute Couture luxurious work could be developed by applying the mixed nubi method to costumes.

  • PDF

Structure-Activity Relationship of the N-terminal Helix Analog of Papiliocin, PapN

  • Jeon, Dasom;Jeong, Min-Cheol;Kim, Jin-Kyoung;Jeong, Ki-Woong;Ko, Yoon-Joo;Kim, Yangmee
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.19 no.2
    • /
    • pp.54-60
    • /
    • 2015
  • Papiliocin, from the swallowtail butterfly, Papilio xuthus, shows high bacterial cell selectivity against Gram-negative bacteria. Recently, we designed a 22mer analog with N-terminal helix from $Lys^3$ to $Ala^{22}$, PapN. It shows outstanding antimicrobial activity against Gram-negative bacteria with low toxicity against mammalian cells. In this study, we determined the 3-D structure of PapN in 300 mM DPC micelle using NMR spectroscopy and investigated the interactions between PapN and DPC micelles. The results showed that PapN has an amphipathic ${\alpha}$-helical structure from $Lys^3$ to $Lys^{21}$. STD-NMR and DOSY experiment showed that this helix is important in binding to the bacterial cell membrane. Furthermore, we tested antibacterial activities of PapN in the presence of salt for therapeutic application. PapN was calcium- and magnesium-resistant in a physiological condition, especially against Gram-negative bacteria, implying that it can be a potent candidate as peptide antibiotics.

Membrane Perturbation Induced by Papiliocin Peptide, Derived from Papilio xuthus, in Candida albicans

  • Lee, June-Young;Hwang, Jae-Sam;Hwang, Bo-Mi;Kim, Jin-Kyoung;Kim, Seong-Ryul;Kim, Yang-Mee;Lee, Dong-Gun
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.8
    • /
    • pp.1185-1188
    • /
    • 2010
  • Previously, papiliocin was isolated from the swallowtail butterfly Papilio xuthus and its antimicrobial activity was suggested. In this study, the antifungal mechanism of papiliocin against Candida albicans was investigated. Confocal laser scanning microscopy (CLSM) and 1,6-diphenyl-1,3,5-hexatriene (DPH) fluorescence analysis indicated that papiliocin disturbed the fungal plasma membrane. Moreover, the assessment of the release of FITC-dextran (FD) from liposomes further demonstrated that the antifungal mechanism of papiliocin could have originated from the pore-forming action and that the radius of the pores was presumed to be anywhere from 2.3 to 3.3 nm.