References
- Fontana R, Mendes MA, de Souza BM, Konno K, Cesar LM, Malaspina O, et al. 2004. Jelleines: a family of antimicrobial peptides from the Royal Jelly of honybees (Apis mellifera). Peptides 2: 919-928.
- Hoffman JA, Kafatos FC, Janeway CA, Ezekowitz RA. 1999. Phylogenetic perspectives in innate immunity. Science 284: 1313-1318. https://doi.org/10.1126/science.284.5418.1313
- Hwang B, Hwang, JS, Lee J, Kim JK, Kim SR, Kim Y, et al. 2011. Induction of yeast apoptosis by an antimicrobial peptide, Papiliocin. Biochem. Biophys. Res. Commun. 408: 89-93. https://doi.org/10.1016/j.bbrc.2011.03.125
- Hwang JS, Lee J, Hwang B, Nam SH, Yun EY, Kim SR, et al. 2010. Isolation and characterization of Psacotheasin, a novel Knottin-type antimicrobial peptide, from Psacothea hilaris. J. Microbiol Biotechnol. 20: 708-711. https://doi.org/10.4014/jmb.1002.02003
- Kim SR, Hong MY, Park SW, Choi KH, Yun EY, Goo TW, et al. 2010. Characterization and cDNA cloning of a cecropin-like antimicrobial peptide, papiliocin, from the swallowtail butterfly, Papilio Xuthus. Mol. Cells 29: 419-423. https://doi.org/10.1007/s10059-010-0050-y
- Kim J, Jacob B, Jang M, Kwak C, Lee Y, Son K, et al. 2019. Development of a novel Short 12-meric papiliocin-derived peptide that is effective against gram-negative sepsis. Sci. Rep. 7: 3817. https://doi.org/10.1038/s41598-017-04201-x
- Klepserv ME, Malone D, Lewis RE, Ernst EJ, Pfaller MA. 2000. Evaluation of voriconazole pharmacodynamics using time-kill methodology. Antimicrob. Agents Chemother. 44: 1917-1920. https://doi.org/10.1128/AAC.44.7.1917-1920.2000
- Lee J, Hwang JS, Hwang B, Kim JK, Kim SR, Kim Y, et al. 2010. Membrane perturbation induced by papiliocin peptide, derived from Papilio xuthus, in Candida albicans. J. Microbiol. Biotechnol. 20: 1185-1188. https://doi.org/10.4014/jmb.1004.04014
- Lei J, Sun L, Huang S, Zhu C, Li P, He J, et al. 2019. The antimicrobial peptides and their potential clinical applications. Am. J. Trans. Res. 11: 3919-3931.
- Leontiadou H, Mark AE, Marrink SJ. 2006. Antimicrobial peptides in action. J. Am. Chem. Soc. 128: 12156-12161. https://doi.org/10.1021/ja062927q
- Melo MN, Ferre R, Castanho MA. 2009. Antimicrobial peptides: linking partition, activity and high membrane-bound concentrations. Nat. Rev. Microbiol. 7: 245-250. https://doi.org/10.1038/nrmicro2095
- Nikaido H. 2010. Multidrug resistance in bacteria. Annu. Rev. Biochem. 78: 119-146. https://doi.org/10.1146/annurev.biochem.78.082907.145923
- Pushpanathan M, Gunasekaran P, Rajendhran J. 2013. Antimicrobial peptides: versatile biological properties. Int. J. Pept. 2013: 675391.
- Qi X, Zhou C, Li P, Xu W, Cao Y, Ling H, et al. 2010. Novel short antibacterial and antifungal peptides with low cytotoxicity: efficacy and action mechanisms. Biochem. Biophys. Res. Commun. 398: 594-600. https://doi.org/10.1016/j.bbrc.2010.06.131
- Raguse TL, Porter EA, Weisblum B, Gellman SH. 2002. Structure-activity studies of 14-helical antimicrobial beta-peptides: probing the relationship between conformational stability and antimicrobial potency. J. Am. Chem. Soc. 124: 12774-12785. https://doi.org/10.1021/ja0270423
- Rathinakumar R, Wimley WC. 2008. Biomolecular engineering by combinatorial design and high-throughput screening: small, soluble peptides that permeabilize membranes. J. Am. Chem. Soc. 130: 9849-9858. https://doi.org/10.1021/ja8017863
- Son K, Kim J, Jang M, Chauhan AK, Kim Y. 2019. Effects of C-terminal residues of 12-mer peptides on antibacterial efficacy and mechanism. J. Microbiol. Biotechnol. 29: 1707-1716. https://doi.org/10.4014/jmb.1907.07061
- Zelezetsky I, Tossi A. 2006. Alpha-helical antimicrobial peptides-using a sequence template to guide structure-activity relationship studies. Biochim. Biophys. Acta 1758: 1436-1449. https://doi.org/10.1016/j.bbamem.2006.03.021
- Zhang L, Gallo RL. 2016. Antimicrobial peptides. Curr. Biol. 26: R14-R19. https://doi.org/10.1016/j.cub.2015.11.017
Cited by
- Butterfly Conservation in China: From Science to Action vol.11, pp.10, 2020, https://doi.org/10.3390/insects11100661