• Title/Summary/Keyword: Sustainable it

Search Result 3,581, Processing Time 0.029 seconds

Nutrient Recovery from Sludge Fermentation Effluent in Upflow Phosphate Crystallization Process (상향류 인 결정화공정을 이용한 슬러지 발효 유출수로 부터의 영양소 회수)

  • Ahn, Young-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.8
    • /
    • pp.866-871
    • /
    • 2006
  • The nutrient recovery in phosphate crystallization process was investigated by using laboratory scale uptlow reactors, adopting sequencing batch type configuration. The industrial waste lime was used as potential cation source with magnesium salt($MgCl_2$) as control. The research was focused on its successful application in a novel integrated sludge treatment process, which is comprised of a high performance fermenter followed by a crystallization reactor. In the struvite precipitation test using synthetic wastewater first, which has the similar characteristics with the real fermentation effluent, the considerable nutrient removal(about 60%) in both ammonia and phosphate was observed within $0.5{\sim}1$ hr of retention time. The results also revealed that a minor amount(<5%) of ammonia stripping naturally occurred due to the alkaline(pH 9) characteristic in feed substrate. Stripping of $CO_2$ by air did not increase the struvite precipitation rate but it led to increased ammonia removal. In the second experiment using the fermentation effluent, the optimal dosage of magnesium salt for struvite precipitation was 0.86 g Mg $g^{-1}$ P, similar to the mass ratio of the struvite. The optimal dosage of waste lime was 0.3 g $L^{-1}$, resulting in 80% of $NH_4-N$ and 41% of $PO_4-P$ removal, at about 3 hrs of retention time. In the microscopic analysis, amorphous crystals were mainly observed in the settled solids with waste lime but prism-like crystals were observed with magnesium salt. Based on mass balance analysis for an integrated sludge treatment process(fermenter followed by crystallization reactor) for full-scale application(treatment capacity Q=158,880 $m^3\;d^{-1}$), nutrient recycle loading from the crystallization reactor effluent to the main liquid stream would be significantly reduced(0.13 g N and 0.19 g P per $m^3$ of wastewater, respectively). The results of the experiment reveal therefore that the reuse of waste lime, already an industrial waste, in a nutrient recovery system has various advantages such as higher economical benefits and sustainable treatment of the industrial waste.

Comparison of Turfgrass Density, Uniformity and Tiller Characteristics in Mixtures of Overseeded Warm-Season and Cool-Season Grasses (덧파종한 난지형 및 한지형 혼합 식생 잔디밭에서 잔디밀도, 균일도 및 분얼경 특성 비교)

  • Kim, Kyoung-Nam
    • Weed & Turfgrass Science
    • /
    • v.6 no.1
    • /
    • pp.67-76
    • /
    • 2017
  • The study was initiated to evaluate the effects of overseeding warm-season grass (Zoysia japonica Steud.) with cool-season grasses (CSG) on turfgrass density, uniformity and tiller appearance and to determine turfgrass species and seeding rate applicable for a practical use. Treatments were comprised of Kentucky bluegrass (KB, Poa pratensis L.), perennial ryegrass (PR, Lolium perenne L.), tall fescue (TF, Festuca arundinacea Schreb.) and their mixtures. Overall turfgrass density and uniformity were much better with the overseeded treatments over the control. In early stage after overseeding, the greater the PR in treatments, the greater the turfgrass density and uniformity. But the higher the KB, the lower the density and uniformity. From the middle-stage evaluation, however, we observed the opposite results as compared with early-stage findings. Accordingly, the KB was highest in turfgrass density and uniformity, while the PR lowest. In regards of mixtures, both turfgrass density and uniformity were better with increased KB and decreased PR in overseeding rates. As for a medium-quality mixtures of Korean lawngrass with CSG, it would be the best choice to apply with KB at $50g\;m^{-2}$ and equal combination of KB, PR and TF by 1/3 in mixing at $75g\;m^{-2}$ in terms of sustainable density and uniformity.

A Study of Improvement for the Prediction of Groundwater Pollution in Rural Area: Application in Keumsan, Korea (농촌지역 지하수의 오염 예측 방법 개선방안 연구: 충남 금산 지역에의 적용)

  • Cheong, Beom-Keun;Chae, Gi-Tak;Koh, Dong-Chan;Ko, Kyung-Seok;Koo, Min-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.4
    • /
    • pp.40-53
    • /
    • 2008
  • Groundwater pollution prediction methods have been developed to plan the sustainable groundwater usage and protection from potential pollution in many countries. DRASTIC established by US EPA is the most widely used groundwater vulnerability mapping method. However, the DRASTIC showed limitation in predicting the groundwater contamination because the DRASTIC method is designed to embrace only hydrogeologic factors. Therefore, in this study, three different methods were applied to improve a groundwater pollution prediction method: US EPA DRASTIC, Modified-DRASTIC suggested by Panagopoulos et al. (2006), and LSDG (Land use, Soil drainage, Depth to water, Geology) proposed by Rupert (1999). The Modified-DRASTIC is the modified version of the DRASTIC in terms of the rating scales and the weighting coefficients. The rating scales of each factor were calculated by the statistical comparison of nitrate concentrations in each class using the Wilcoxon rank-sum test; while the weighting coefficients were modified by the statistical correlation of each parameter to nitrate concentrations using the Spearman's rho test. The LSDG is a simple rating method using four factors such as Land use, Soil drainage, Depth to water, and Geology. Classes in each factor are compared by the Wilcoxon rank-sum test which gives a different rating to each class if the nitrate concentration in the class is significantly different. A database of nitrate concentrations in groundwaters from 149 wells was built in Keumsan area. Application of three different methods for assessing the groundwater pollution potential resulted that the prediction which was represented by a correlation (r) between each index and nitrate was improved from the EPA DRASTIC (r = 0.058) to the modified rating (r = 0.245), to the modified rating and weights (r = 0.400), and to the LSDG (r = 0.415), respectively. The LSDG seemed appropriate to predict the groundwater pollution in that it contained land use as a factor of the groundwater pollution sources and the rating of each class was defined by a real pollution nitrate concentration.

Inoculation Effect of Methylobacterium suomiense on Growth of Red Pepper under Different Levels of Organic and Chemical Fertilizers (화학비료와 유기질비료의 시용수준 및 Methylobacterium suomiense CBMB120의 처리가 고추 생육에 미치는 영향)

  • Lee, Min-Kyoung;Lee, Gil-Seung;Yim, Woo-Jong;Hong, In-Soo;Palaniappan, Pitchai;Siddikee, Md. Ashaduzzaman;Boruah, Hari P. Deka;Madhaiyan, Munusamy;Ahn, Ki-Sup;Sa, Tongmin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.4
    • /
    • pp.266-273
    • /
    • 2009
  • Use of plant growth promoting symbiotic and non-symbiotic free-living beneficial bacteria as external source of nitrogen is a major research concern for sustainable crop production in the $21^{st}$ century. In view of this, an experiment was conducted under controlled conditions to determine the effects of inoculation with Methylobacterium suomiense CBMB120, a plant growth promoting (PGP) root and shoot colonizer on red pepper, for the purpose of reducing external chemical nitrogen fertilization. Amendments with organic fertilizer and chemical fertilizer in the form of NPK were made at dosages of 50%, 75% and 100%, at 425 and $115kg/ha^{-1}$ measurements. The soil type used was loam, with a pH of 5.13. The growth responses were measured as plant height at 19, 36 and 166 days after transplantation and final biomass production after 166 days. It was found that inoculation with M. suomiense CBMB120 promotes plant height increase during the active growth phase at 19 and 36 days by 14.17% and 10.03%, respectively. Thereafter, the bacteria inoculated plantlets showed canopy size increment. A highly significant inoculation effect on plant height at p<0.01 level was found for 100% level of organic matter and chemical amendment in red pepper plantlets after 36 days and 19 days from transplantation. Furthermore, there was a significantly higher (10.30% and 6.84%) dry biomass accumulation in M. suomiense CBMB120 inoculated plants compared to un-inoculated ones. A 25% reduction in the application of chemical nitrogen can be inferred with inoculation of M. suomiense CBMB120 at with comparable results to that of 100% chemical fertilization alone. Enumeration of total bacteria in rhizosphere soil confirms that the introduced bacteria can multiply along ther hizosphere soil. Large scale field study may lead to the development of M. suomiense CBMB120 as an efficient biofertilizer.

Impact of the Rice-Duck Farming System on Regional Agricultural Environment at Hongsung Area (오리농법에 의한 벼 재배가 지역 환경에 미치는 영향 평가)

  • Roh, Kee-An;Kim, Min-Kyeong;Ko, Byong-Gu;Kim, Gun-Yeob;Shim, Kyo-Moon;Jeong, Hyun-Cheol;Lee, Deog-Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.spc
    • /
    • pp.57-61
    • /
    • 2009
  • To clarify the impact of the rice-duck farming system on the regional environment and the surrounding, a case study was carried out at Hongdong Reservoir valley of Hongdong-myeon and Janggok-myeon, Hongseong-gun, Chungcheongnam-do where the density of livestock grazing is the highest and rice cultivation with the rice-duck farming system is extensively practiced. The soil characteristics and water qualities at paddy fields were compared between two rice cultivation methods of rice-duck farming system and conventional farming system. The organic matters and available phosphate contents in soil of paddy fields where the rice-duck farming system was practiced were higher than those of paddy fields where conventional farming system was practiced. However, the available phosphate content was lower than the optimum for rice cultivation and the mean concentration of paddy soil in Korea. The surface water quality of the paddy field with the rice-duck farming system was practiced had higher EC (137 %), $COD_{Cr}$ (220 %), T-N (172 %), and T-P (226 %) contents than that with the conventional farming system was practiced. Especially, $COD_{Cr}$ and T-P were more than 2 times higher, which tells that the possibility of water pollution by drainage water of paddy field is higher in the paddy fields with the rice-duck farming system practiced than in those with the conventional farming practiced. The higher contents of T-P and $COD_{Cr}$ in surface water at the paddy field of rice-duck farming system practiced were directly caused by soil particles in the muddy water. Consequently, it is necessary to thoroughly manage the irrigation and drainage system of rice-duck farming system practiced to prevent outflow of surface water from paddy and pollution of surrounding water system.

A Study on the Activation Factors of Voluntary Community Activities in Neighborhood Parks - Based on the People Who Love Chamsaem in Sejong City - (근린 생활권 공원에서의 자발적 공동체 활동의 활성화 요인에 관한 연구 - 세종시 '참샘을 사랑하는 모임'을 대상으로 -)

  • Kim, Woo-Joo;Lee, Cha-Hee;Sung, Jong-Sang
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.46 no.2
    • /
    • pp.37-51
    • /
    • 2018
  • Recently, urban parks are required to actively participate with residents in order to strengthen social functions and maintain sustainable management. This study analyzed the formation process of volunteer resident groups (Chamsamo) in the neighborhood parks in which local residents can participate in an ongoing basis based on the solidarity of a daily living space. The important factors in the activation of resident activity are derived from 5 aspects including resources, local area, resident group capacity, resident group role, and public support. The results of the study are as follows. 1) Life-friendly resources: It was important to find life-friendly resources such as 'Chamsaem' in the park. The combined resources of continuous human activities provided various benefits to the residents. This has led to stronger attachment and community activities to continue to utilize attractive resources in the park. 2) Sharing Common Daily Spaces and Expansion: As the Chamsamo activities were centered around the neighborhood, the network of activists in the local community expanded. This led to continued resident interest and favorable participation as well as to the regional expansion of Chamsamo activities. 3) Park management as part of everyday life: Park management became a part of everyday life, and pleasant park management was facilitated by utilizing the talents of the residents, who carried out diverse activities and constantly streamlined their hard labor. 4) Chamsamo's Leadership Linking Residents and the Public Sector through Leading Park Management Activities: Chamsamo served as a middle leader in linking the public sector and its users. 5) Role and Support of the Public Sector: In order to be able to sustain the activities of residents, the government's willingness to support the resident-led activities of the park in planning and operating the public sector was required. In the public management system of the park, support for residents' activities such as financing, education, and consulting was necessary.

Comparative Evaluation of Neighborhood Parks in Korea and China based on the Place Attachment Model (장소애착 모델에 근거한 한국·중국 근린공원의 비교평가)

  • Yang, Lei;Lee, Shiyoung
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.45 no.3
    • /
    • pp.21-29
    • /
    • 2017
  • In this study of visitor place attachment to parks, Scannel and Gilford considered the dimensions of place attachment, and proposed the theoretical framework of PPP(Place, Person, Process) that should be systematically studied from the perspective of person, place and psychological processes. According to Scannel's theoretical basis, this paper puts forward the hypothesis of a structure model of place attachment. In the model, the five independent variables of people, places, cognition, emotion, and behavior have influenced the dependent variable of place attachment. The questionnaire was conducted on 18 neighborhood parks in Kunming, China, and the residents of the 5 neighborhood parks in Daejeon, South Korea. A total of 1,645 valid samples of the questionnaire survey were collected. Through confirmatory factor analysis(CFA) results of the inspection of the various elements, it was shown that the reliabilities of 6 latent variables, such as people, places, cognition, affection, behavior and place attachment, which were composed with the observed variables(30 observed variables in Daejeon, 19 observed variables in Kunming), were all above 0.7 and the data were fit for this study. The hypothesis test results found that the physical environment of the neighborhood parks such as a comfortable environment, pleasant road and convenient facilities would increase the rate of visitors coming back. From the park management perspective, to increase the amount of visitors to the park, the park should increase visibility, provide more organized, varied activities and meetings, or special exhibitions according to the particular characteristics of the individual park, to increase awareness of the park. From the park visitors' psychological perspective, visitors are seeking to enjoy the park facilities and environment not only to bring physical relaxation, but also to bring about a psychological cure. With the commonality of attachment structure between the two countries, to improve the place attachment of neighborhood park visitors, collecting regularly visitor feedback will facilitate the sustainable development of neighborhood park attachment.

Distribution Pattern of Vascular Plant Species along an Elevational Gradient in the Samga Area of Sobaeksan National Park (소백산국립공원 삼가지구 관속식물의 고도별 분포패턴)

  • Park, Hwan Joon;Ahn, Ji Hong;Seo, In soon;Lee, Sae Rom;Lee, Byoung Yoon;Kim, Jung Hyun
    • Journal of Korean Society of Forest Science
    • /
    • v.109 no.1
    • /
    • pp.1-22
    • /
    • 2020
  • In order to evaluate the vertical distribution and distributional pattern of vascular plants in the Samga district of Sobaeksan National Park, vascular plants were surveyed along a hiking trail from the Samga Tour Support Center to the top of a mountain. The elevation range was divided into 11 sections with 100 m intervals from 400 m to 1439 m above sea level.A total of 375 taxa were listed, comprising 92 families, 235 genera, 332 species, 3 subspecies, 37 varieties, and 3 forms. The pattern of species richness along the elevational gradient showed a reverse hump-shaped trend. The species distribution pattern was positively correlated with the soil exchangeable cations Ca2+ and Mg2+, soil pH, available phosphate, and the warmth index. Furthermore, slope, soil moisture content, and soil exchangeable cations were significantly correlated with species distribution. DCA grouped herb species into two groups. Stands of each section were sequentially arranged from 400 m to 1500 m along an altitudinal gradient. Soil moisture content, soil pH, soil K2+ and Na2+, available phosphate, and slope were significantly correlated with stand distribution. This study provides important data that could be useful for conservation and the sustainable use of biodiversity in the study area. In order to understand the ecological and environmental characteristics and distribution of plant species, it will be necessary to continuously develop relative studies with continuous monitoring.

Management of plant genetic resources at RDA in line with Nagoya Protocol

  • Yoon, Moon-Sup;Na, Young-Wang;Ko, Ho-Cheol;Lee, Sun-Young;Ma, Kyung-Ho;Baek, Hyung-Jin;Lee, Su-Kyeung;Lee, Sok-Young
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.51-52
    • /
    • 2017
  • "Plant genetic resources for food and agriculture" means any genetic material of plant origin of actual or potential value for food and agriculture. "Genetic material" means any material of plant origin, including reproductive and vegetative propagating material, containing functional units of heredity. (Internal Treaty on Plant Genetic Resources for Food and Agriculture, ITPGRFA). The "Nagoya Protocol on Access to Genetic Resources and the Fair and Equitable Sharing of Benefits Arising from their Utilization (ABS) to the Convention on Biological Diversity (shortly Nagoya Protocol)" is a supplementary agreement to the Convention on Biological Diversity. It provides a transparent legal framework for the effective implementation of one of the three objectives of the CBD: the fair and equitable sharing of benefits arising out of the utilization of genetic resources. The Nagoya Protocol on ABS was adopted on 29 October 2010 in Nagoya, Japan and entered into force on 12 October 2014, 90 days after the deposit of the fiftieth instrument of ratification. Its objective is the fair and equitable sharing of benefits arising from the utilization of genetic resources, thereby contributing to the conservation and sustainable use of biodiversity. The Nagoya Protocol will create greater legal certainty and transparency for both providers and users of genetic resources by; (a) Establishing more predictable conditions for access to genetic resources and (b) Helping to ensure benefit-sharing when genetic resources leave the country providing the genetic resources. By helping to ensure benefit-sharing, the Nagoya Protocol creates incentives to conserve and sustainably use genetic resources, and therefore enhances the contribution of biodiversity to development and human well-being. The Nagoya Protocol's success will require effective implementation at the domestic level. A range of tools and mechanisms provided by the Nagoya Protocol will assist contracting Parties including; (a) Establishing national focal points (NFPs) and competent national authorities (CNAs) to serve as contact points for information, grant access or cooperate on issues of compliance, (b) An Access and Benefit-sharing Clearing-House to share information, such as domestic regulatory ABS requirements or information on NFPs and CNAs, (c) Capacity-building to support key aspects of implementation. Based on a country's self-assessment of national needs and priorities, this can include capacity to develop domestic ABS legislation to implement the Nagoya Protocol, to negotiate MAT and to develop in-country research capability and institutions, (d) Awareness-raising, (e) Technology Transfer, (f) Targeted financial support for capacity-building and development initiatives through the Nagoya Protocol's financial mechanism, the Global Environment Facility (GEF) (Nagoya Protocol). The Rural Development Administration (RDA) leading to conduct management agricultural genetic resources following the 'ACT ON THE PRESERVATION, MANAGEMENT AND USE OF AGRO-FISHERY BIO-RESOURCES' established on 2007. According to $2^{nd}$ clause of Article 14 (Designation, Operation, etc. of Agencies Responsible for Agro-Fishery Bioresources) of the act, the duties endowed are, (a) Matters concerning securing, preservation, management, and use of agro-fishery bioresources; (b) Establishment of an integrated information system for agro-fishery bioresources; (c) Matters concerning medium and long-term preservation of, and research on, agro-fishery bioresources; (d) Matters concerning international cooperation for agro-fishery bioresources and other relevant matters. As the result the RDA manage about 246,000 accessions of plant genetic resources under the national management system at the end of 2016.

  • PDF

Characteristics of Phosphorus Accumulation in Organic Farming Fields (유기농업실천농가 포장내 인산의 분포특성)

  • Kim, Pil-Joo;Lee, Sang-Min;Yoon, Hong-Bae;Park, Yang-Ho;Lee, Ju-Young;Kim, Suk-Chul;Choe, Suk-Chul
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.33 no.4
    • /
    • pp.234-241
    • /
    • 2000
  • Organic farming (OF) is regarded as alternative farming types against general farming system for sustainable agriculture, recently. However, there is little information on effects of OF on soil properties and watershed condition. In order to determine the effects of OF on soil properties, 36, 10 and 8 sites of organic farming (OF) fields of plastic film houses, paddy and orchard were selected in the national scale, respectively, to evaluate their chemical properties and phosphorus distributing characteristics. The average organic matter (OM) contents in organic farming fields were with $44g\;kg^{-1}$ in plastic film houses, $26g\;kg^{-1}$ in paddies and $39g\;kg^{-1}$ in orchard soils higher than the average OM contents in conventional farming (CF) soils. Available phosphates were accumulated to 986 in plastic film house soils and $754mg\;kg^{-1}$ in orchard soils, respectively, over the optimum range. Furthermore, total P (T-P) reached to $2.973mg\;kg^{-1}$ in plastic film houses and $2303mg\;kg^{-1}$ in orchards in OF soils. It could be attained by applying repeatedly low N/P ratio of manure-based compost. In two types of soils inorganic P was dominant with the ratio of 62~80% of T-P, and then residual and organic Ps followed. However. residual-P was dominant in paddy soils with the rate of 50% of T-P. Fractionation of soil extractable P showed that Ca-P was dominant with about $1,330mg\;kg^{-1}$ in upland soils in OF fields, which is affected by high soil pH of over 6.0. However. Fe-P of extractable P was dominant in paddy soils. Water-soluble P was very high with 65 and $26mg\;kg^{-1}$ in plastic film house and orchard soils in OF. From this results. OF regarded as an environment-friendly farming system may cause serious soil deterioration by accumulated phosphorus and may also cause water pollution.

  • PDF